Surface Area and Volume - Grade 8
1. Volume of Cubes, Prisms, and Pyramids
Volume: The amount of space inside a three-dimensional object, measured in cubic units.
Volume Formulas:
Cube: \( V = s^3 \)
where \( s \) = side length
Rectangular Prism (Cuboid): \( V = l \times w \times h \)
where \( l \) = length, \( w \) = width, \( h \) = height
Prism (General): \( V = Bh \)
where \( B \) = area of the base, \( h \) = height
Triangular Prism: \( V = \frac{1}{2}bhl \)
where \( b \) = base of triangle, \( h \) = height of triangle, \( l \) = length (depth) of prism
Pyramid: \( V = \frac{1}{3}Bh \)
where \( B \) = area of the base, \( h \) = height of pyramid
Examples:
Example 1: Find the volume of a cube with side length 5 cm.
\( V = s^3 = 5^3 = 125 \) cm³
Example 2: Find the volume of a rectangular prism with length 8 m, width 3 m, and height 4 m.
\( V = l \times w \times h = 8 \times 3 \times 4 = 96 \) m³
Example 3: Find the volume of a square pyramid with base side 6 cm and height 9 cm.
Base area: \( B = 6^2 = 36 \) cm²
\( V = \frac{1}{3}Bh = \frac{1}{3} \times 36 \times 9 = 108 \) cm³
2. Surface Area of Cubes, Prisms, and Pyramids
Surface Area: The total area of all faces of a three-dimensional object.
Surface Area Formulas:
Cube: \( SA = 6s^2 \)
6 square faces, each with area \( s^2 \)
Rectangular Prism: \( SA = 2(lw + lh + wh) \)
Sum of areas of all 6 rectangular faces
Prism (General): \( SA = 2B + Ph \)
where \( B \) = area of base, \( P \) = perimeter of base, \( h \) = height
Pyramid: \( SA = B + \frac{1}{2}Pl \)
where \( B \) = area of base, \( P \) = perimeter of base, \( l \) = slant height
Key Terms:
- Lateral Surface Area (LSA): Area of the sides only (excludes bases)
- Total Surface Area (TSA): Area of all faces including bases
- Slant Height (l): Distance from apex to midpoint of base edge (pyramids)
Examples:
Example 1: Find the surface area of a cube with side 4 cm.
\( SA = 6s^2 = 6 \times 4^2 = 6 \times 16 = 96 \) cm²
Example 2: Find the surface area of a rectangular prism with dimensions 5 m × 3 m × 4 m.
\( SA = 2(lw + lh + wh) = 2(5×3 + 5×4 + 3×4) \)
\( = 2(15 + 20 + 12) = 2(47) = 94 \) m²
3. Volume of Cylinders
Volume of Cylinder: \( V = \pi r^2 h \)
where \( r \) = radius of base, \( h \) = height of cylinder
Understanding the Formula:
- A cylinder is like a prism with a circular base
- Base area = \( \pi r^2 \) (area of circle)
- Volume = Base area × height
- Use \( \pi = 3.14 \) or \( \pi = \frac{22}{7} \) as specified
Examples:
Example 1: Find the volume of a cylinder with radius 7 cm and height 10 cm. (Use \( \pi = \frac{22}{7} \))
\( V = \pi r^2 h = \frac{22}{7} \times 7^2 \times 10 = \frac{22}{7} \times 49 \times 10 \)
\( V = 22 \times 7 \times 10 = 1540 \) cm³
Example 2: A cylindrical tank has diameter 14 m and height 5 m. Find its volume. (Use \( \pi = 3.14 \))
Radius = \( \frac{14}{2} = 7 \) m
\( V = \pi r^2 h = 3.14 \times 7^2 \times 5 = 3.14 \times 49 \times 5 = 769.3 \) m³
4. Volume of Cones
Volume of Cone: \( V = \frac{1}{3}\pi r^2 h \)
where \( r \) = radius of base, \( h \) = height (perpendicular height from apex to base)
Key Relationship:
Volume of cone = \( \frac{1}{3} \) × Volume of cylinder with same base and height
Examples:
Example 1: Find the volume of a cone with radius 3 cm and height 7 cm. (Use \( \pi = \frac{22}{7} \))
\( V = \frac{1}{3}\pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times 3^2 \times 7 \)
\( V = \frac{1}{3} \times \frac{22}{7} \times 9 \times 7 = \frac{1}{3} \times 22 \times 9 = 66 \) cm³
Example 2: A cone has diameter 10 cm and height 12 cm. Find its volume. (Use \( \pi = 3.14 \))
Radius = \( \frac{10}{2} = 5 \) cm
\( V = \frac{1}{3} \times 3.14 \times 5^2 \times 12 = \frac{1}{3} \times 3.14 \times 25 \times 12 \)
\( V = \frac{942}{3} = 314 \) cm³
5. Surface Area of Cylinders
Formulas:
Curved (Lateral) Surface Area: \( CSA = 2\pi rh \)
Area of the curved side only
Total Surface Area: \( TSA = 2\pi r^2 + 2\pi rh \) or \( TSA = 2\pi r(r + h) \)
Includes two circular bases and the curved surface
Components:
- Two circular bases: \( 2 \times \pi r^2 = 2\pi r^2 \)
- Curved surface: \( 2\pi rh \) (circumference × height)
Examples:
Example 1: Find the total surface area of a cylinder with radius 7 cm and height 10 cm. (Use \( \pi = \frac{22}{7} \))
\( TSA = 2\pi r(r + h) = 2 \times \frac{22}{7} \times 7 \times (7 + 10) \)
\( = 2 \times 22 \times 17 = 748 \) cm²
Example 2: Find the curved surface area of a cylinder with radius 5 m and height 8 m. (Use \( \pi = 3.14 \))
\( CSA = 2\pi rh = 2 \times 3.14 \times 5 \times 8 = 251.2 \) m²
6. Surface Area of Cones
Formulas:
Curved (Lateral) Surface Area: \( CSA = \pi rl \)
where \( l \) = slant height
Total Surface Area: \( TSA = \pi r^2 + \pi rl \) or \( TSA = \pi r(r + l) \)
Includes circular base and curved surface
Finding Slant Height:
If height \( h \) and radius \( r \) are known: \( l = \sqrt{r^2 + h^2} \)
(Uses Pythagorean theorem)
Examples:
Example 1: Find the total surface area of a cone with radius 7 cm and slant height 10 cm. (Use \( \pi = \frac{22}{7} \))
\( TSA = \pi r(r + l) = \frac{22}{7} \times 7 \times (7 + 10) \)
\( = 22 \times 17 = 374 \) cm²
Example 2: A cone has radius 5 cm and height 12 cm. Find its curved surface area. (Use \( \pi = 3.14 \))
Step 1: Find slant height: \( l = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \) cm
Step 2: \( CSA = \pi rl = 3.14 \times 5 \times 13 = 204.1 \) cm²
7. Volume of Spheres
Volume of Sphere: \( V = \frac{4}{3}\pi r^3 \)
where \( r \) = radius of sphere
Key Points:
- A sphere is a perfectly round 3D shape
- All points on surface are equidistant from center
- Radius is the only dimension needed
- If diameter is given, find radius first: \( r = \frac{d}{2} \)
Examples:
Example 1: Find the volume of a sphere with radius 3 cm. (Use \( \pi = \frac{22}{7} \))
\( V = \frac{4}{3}\pi r^3 = \frac{4}{3} \times \frac{22}{7} \times 3^3 \)
\( = \frac{4}{3} \times \frac{22}{7} \times 27 = \frac{4 \times 22 \times 27}{21} = \frac{2376}{21} \approx 113.14 \) cm³
Example 2: A spherical ball has diameter 14 cm. Find its volume. (Use \( \pi = \frac{22}{7} \))
Radius = \( \frac{14}{2} = 7 \) cm
\( V = \frac{4}{3} \times \frac{22}{7} \times 7^3 = \frac{4}{3} \times \frac{22}{7} \times 343 \)
\( = \frac{4 \times 22 \times 49}{3} = \frac{4312}{3} \approx 1437.33 \) cm³
8. Surface Area of Spheres
Surface Area of Sphere: \( SA = 4\pi r^2 \)
where \( r \) = radius of sphere
Relationship to Circle:
Surface area of sphere = 4 × Area of a great circle (circle with same radius)
Examples:
Example 1: Find the surface area of a sphere with radius 7 cm. (Use \( \pi = \frac{22}{7} \))
\( SA = 4\pi r^2 = 4 \times \frac{22}{7} \times 7^2 = 4 \times \frac{22}{7} \times 49 \)
\( = 4 \times 22 \times 7 = 616 \) cm²
Example 2: A spherical balloon has diameter 10 cm. Find the area of material needed. (Use \( \pi = 3.14 \))
Radius = \( \frac{10}{2} = 5 \) cm
\( SA = 4\pi r^2 = 4 \times 3.14 \times 5^2 = 4 \times 3.14 \times 25 = 314 \) cm²
9. Volume and Surface Area of Similar Solids
Similar Solids: 3D shapes with the same shape but different sizes. All corresponding linear dimensions are proportional.
Scale Factor Relationships:
If the scale factor (ratio of corresponding lengths) is \( k \), then:
Measure | Ratio | Formula |
---|---|---|
Linear dimensions | \( k : 1 \) | \( \frac{l_1}{l_2} = k \) |
Surface Area | \( k^2 : 1 \) | \( \frac{SA_1}{SA_2} = k^2 \) |
Volume | \( k^3 : 1 \) | \( \frac{V_1}{V_2} = k^3 \) |
Key Principle:
- Linear scale factor = k
- Surface area scale factor = k²
- Volume scale factor = k³
Examples:
Example 1: Two similar cylinders have heights 4 cm and 12 cm. If the smaller cylinder has surface area 100 cm², find the surface area of the larger cylinder.
Scale factor: \( k = \frac{12}{4} = 3 \)
Surface area ratio: \( k^2 = 3^2 = 9 \)
\( \frac{SA_{\text{large}}}{SA_{\text{small}}} = 9 \) → \( \frac{SA_{\text{large}}}{100} = 9 \)
\( SA_{\text{large}} = 900 \) cm²
Example 2: Two similar spheres have volumes 64 cm³ and 216 cm³. If the smaller sphere has radius 4 cm, find the radius of the larger sphere.
Volume ratio: \( \frac{V_1}{V_2} = \frac{64}{216} = \frac{8}{27} = \frac{2^3}{3^3} \)
Scale factor: \( k = \frac{3}{2} = 1.5 \)
\( \frac{r_{\text{large}}}{r_{\text{small}}} = 1.5 \) → \( \frac{r_{\text{large}}}{4} = 1.5 \)
\( r_{\text{large}} = 6 \) cm
Example 3: Two similar cubes have edge lengths 5 cm and 10 cm. Find the ratio of their volumes.
Scale factor: \( k = \frac{10}{5} = 2 \)
Volume ratio: \( k^3 = 2^3 = 8 \)
Answer: The volumes are in the ratio 8:1 (or larger volume is 8 times the smaller)
Quick Reference: All Formulas
Shape | Volume | Surface Area |
---|---|---|
Cube | \( V = s^3 \) | \( SA = 6s^2 \) |
Rectangular Prism | \( V = lwh \) | \( SA = 2(lw+lh+wh) \) |
Prism (General) | \( V = Bh \) | \( SA = 2B + Ph \) |
Pyramid | \( V = \frac{1}{3}Bh \) | \( SA = B + \frac{1}{2}Pl \) |
Cylinder | \( V = \pi r^2 h \) | \( SA = 2\pi r(r+h) \) |
Cone | \( V = \frac{1}{3}\pi r^2 h \) | \( SA = \pi r(r+l) \) |
Sphere | \( V = \frac{4}{3}\pi r^3 \) | \( SA = 4\pi r^2 \) |
Key: B = base area, P = base perimeter, h = height, l = slant height, r = radius, s = side
💡 Key Tips for Surface Area and Volume
- ✓ Volume is measured in cubic units (cm³, m³, ft³)
- ✓ Surface area is measured in square units (cm², m², ft²)
- ✓ Pyramid volume = ⅓ × base area × height
- ✓ Cone volume = ⅓ × cylinder volume (same base and height)
- ✓ For slant height: Use Pythagorean theorem: \( l = \sqrt{r^2 + h^2} \)
- ✓ Cylinder SA = 2 circles + rectangle (when unwrapped)
- ✓ Sphere formulas use radius only
- ✓ If diameter given, divide by 2 to get radius
- ✓ Similar solids: Linear × k, Area × k², Volume × k³
- ✓ To find scale factor from volumes: Take cube root of volume ratio
- ✓ Always write units in your final answer!
- ✓ Check if problem asks for total SA or lateral/curved SA