Continuity and Differentiability Class 12 Formulas
1. Continuity
Definition of Continuity
A function \(f(x)\) is continuous at \(x = a\) if:
\[\lim_{x \to a} f(x) = f(a)\]
Conditions for Continuity at \(x = a\)
- \(f(a)\) exists (function is defined at \(x = a\))
- \(\lim_{x \to a} f(x)\) exists
- \(\lim_{x \to a} f(x) = f(a)\)
Left and Right Hand Limits
Left Hand Limit:
\[\lim_{x \to a^-} f(x) = \lim_{h \to 0} f(a - h)\]Right Hand Limit:
\[\lim_{x \to a^+} f(x) = \lim_{h \to 0} f(a + h)\]
Important: \(\lim_{x \to a} f(x)\) exists if and only if \(\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)\)
2. Differentiability
Definition of Derivative
\[f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}\]
Alternative form:
\[f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}\]
Left and Right Hand Derivatives
Left Hand Derivative:
\[f'_-(a) = \lim_{h \to 0^-} \frac{f(a + h) - f(a)}{h}\]Right Hand Derivative:
\[f'_+(a) = \lim_{h \to 0^+} \frac{f(a + h) - f(a)}{h}\]
Function is differentiable at \(x = a\) if: \(f'_-(a) = f'_+(a)\)
3. Relationship between Continuity and Differentiability
- If \(f(x)\) is differentiable at \(x = a\), then \(f(x)\) is continuous at \(x = a\)
- Converse is not true: Continuity does not imply differentiability
- Example: \(f(x) = |x|\) is continuous at \(x = 0\) but not differentiable
4. Standard Derivatives
Basic Functions
- \(\frac{d}{dx}(c) = 0\) where \(c\) is constant
- \(\frac{d}{dx}(x^n) = nx^{n-1}\)
- \(\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}\)
- \(\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}\)
Exponential and Logarithmic Functions
- \(\frac{d}{dx}(e^x) = e^x\)
- \(\frac{d}{dx}(a^x) = a^x \ln a\)
- \(\frac{d}{dx}(\ln x) = \frac{1}{x}\)
- \(\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}\)
Trigonometric Functions
- \(\frac{d}{dx}(\sin x) = \cos x\)
- \(\frac{d}{dx}(\cos x) = -\sin x\)
- \(\frac{d}{dx}(\tan x) = \sec^2 x\)
- \(\frac{d}{dx}(\cot x) = -\csc^2 x\)
- \(\frac{d}{dx}(\sec x) = \sec x \tan x\)
- \(\frac{d}{dx}(\csc x) = -\csc x \cot x\)
Inverse Trigonometric Functions
- \(\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}\)
- \(\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}\)
- \(\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}\)
- \(\frac{d}{dx}(\cot^{-1} x) = \frac{-1}{1+x^2}\)
- \(\frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2-1}}\)
- \(\frac{d}{dx}(\csc^{-1} x) = \frac{-1}{|x|\sqrt{x^2-1}}\)
5. Rules of Differentiation
Basic Rules
Sum/Difference Rule:
\[\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)\]Constant Multiple Rule:
\[\frac{d}{dx}[cf(x)] = c \cdot f'(x)\]Product Rule
\[\frac{d}{dx}[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)\]Quotient Rule
\[\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}\]Chain Rule
If \(y = f(g(x))\), then:
\[\frac{dy}{dx} = f'(g(x)) \cdot g'(x)\]Or in Leibniz notation:
\[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\] where \(u = g(x)\)6. Parametric Differentiation
If \(x = f(t)\) and \(y = g(t)\), then:
\[\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}\]7. Implicit Differentiation
For equations of the form \(F(x,y) = 0\):
- Differentiate both sides with respect to \(x\)
- Treat \(y\) as a function of \(x\)
- Use chain rule: \(\frac{d}{dx}(y^n) = ny^{n-1} \frac{dy}{dx}\)
- Solve for \(\frac{dy}{dx}\)
8. Logarithmic Differentiation
For functions of the form \(y = [f(x)]^{g(x)}\):
- Take natural logarithm: \(\ln y = g(x) \ln f(x)\)
- Differentiate both sides
- \(\frac{1}{y} \frac{dy}{dx} = g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)}\)
- \(\frac{dy}{dx} = y \left[g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)}\right]\)
9. Higher Order Derivatives
Notation
- First derivative: \(f'(x)\) or \(\frac{dy}{dx}\)
- Second derivative: \(f''(x)\) or \(\frac{d^2y}{dx^2}\)
- nth derivative: \(f^{(n)}(x)\) or \(\frac{d^ny}{dx^n}\)
Leibniz Rule for nth Derivative of Product
\[(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}\]10. Mean Value Theorems
Rolle's Theorem
If \(f(x)\) is continuous on \([a,b]\), differentiable on \((a,b)\), and \(f(a) = f(b)\), then there exists \(c \in (a,b)\) such that:
\[f'(c) = 0\]
Mean Value Theorem (Lagrange)
If \(f(x)\) is continuous on \([a,b]\) and differentiable on \((a,b)\), then there exists \(c \in (a,b)\) such that:
\[f'(c) = \frac{f(b) - f(a)}{b - a}\]
11. L'Hôpital's Rule
For indeterminate forms \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\):
\[\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}\](provided the limit on the right exists)
12. Important Limits
- \(\lim_{x \to 0} \frac{\sin x}{x} = 1\)
- \(\lim_{x \to 0} \frac{\tan x}{x} = 1\)
- \(\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}\)
- \(\lim_{x \to 0} (1 + x)^{1/x} = e\)
- \(\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e\)
- \(\lim_{x \to 0} \frac{e^x - 1}{x} = 1\)
- \(\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1\)
- \(\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a\)