Vectors

Vectors - Formulas & Operations

IB Mathematics Analysis & Approaches (SL & HL)

📐 Vector Notation & Representation

Column Vector (2D):

\[\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}\]

Column Vector (3D):

\[\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}\]

Component Form:

\[\mathbf{v} = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}\]

where \(\mathbf{i}, \mathbf{j}, \mathbf{k}\) are unit vectors in x, y, z directions

📍 Position & Displacement Vectors

Position Vector:

\[\overrightarrow{OA} = \mathbf{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}\]

Vector from origin O to point A

Displacement Vector:

\[\overrightarrow{AB} = \mathbf{b} - \mathbf{a}\]

Vector from point A to point B

➕ Vector Operations

Vector Addition:

\[\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix}\]

Vector Subtraction:

\[\mathbf{u} - \mathbf{v} = \begin{pmatrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3 - v_3 \end{pmatrix}\]

Scalar Multiplication:

\[k\mathbf{v} = \begin{pmatrix} kv_1 \\ kv_2 \\ kv_3 \end{pmatrix}\]

where \(k\) is a scalar (real number)

📏 Magnitude (Length) of a Vector

2D Vector Magnitude:

\[|\mathbf{v}| = \sqrt{v_1^2 + v_2^2}\]

3D Vector Magnitude:

\[|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}\]

Given in formula booklet

Distance Between Two Points:

\[|\overrightarrow{AB}| = |\mathbf{b} - \mathbf{a}| = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}\]

🎯 Unit Vectors

Definition:

A unit vector has magnitude equal to 1

Unit Vector in Direction of \(\mathbf{v}\):

\[\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|}\]

Standard Unit Vectors:

\[\mathbf{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\]

⚡ Scalar (Dot) Product

Component Form:

\[\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3\]

Given in formula booklet

Geometric Form:

\[\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\theta\]

where \(\theta\) is the angle between the vectors
Given in formula booklet

Important Properties:

• If \(\mathbf{u} \cdot \mathbf{v} = 0\), vectors are perpendicular
• \(\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2\)
• Commutative: \(\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}\)

📐 Angle Between Two Vectors

Formula:

\[\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\]

Given in formula booklet

To Find the Angle:

\[\theta = \arccos\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\right)\]

📍 Vector Equation of a Line

Vector Form:

\[\mathbf{r} = \mathbf{a} + \lambda\mathbf{b}\]

where \(\mathbf{a}\) = position vector of a point on the line,
\(\mathbf{b}\) = direction vector, \(\lambda\) = parameter
Given in formula booklet

Parametric Form:

\[x = x_0 + \lambda l, \quad y = y_0 + \lambda m, \quad z = z_0 + \lambda n\]

Given in formula booklet

Cartesian Form:

\[\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}\]

⚖️ Parallel & Perpendicular Vectors

Parallel Vectors:

\[\mathbf{u} = k\mathbf{v}\]

where \(k\) is a scalar. One is a scalar multiple of the other.

Perpendicular (Orthogonal) Vectors:

\[\mathbf{u} \cdot \mathbf{v} = 0\]

Scalar product equals zero

✖️ Vector (Cross) Product (HL)

Definition:

\[\mathbf{u} \times \mathbf{v} = \begin{pmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{pmatrix}\]

Given in formula booklet

Magnitude of Cross Product:

\[|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta\]

Given in formula booklet

Properties:

• Result is perpendicular to both \(\mathbf{u}\) and \(\mathbf{v}\)
• Anti-commutative: \(\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})\)
• If \(\mathbf{u} \times \mathbf{v} = \mathbf{0}\), vectors are parallel

🛫 Vector Equation of a Plane (HL)

Vector Form:

\[\mathbf{r} = \mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c}\]

where \(\mathbf{a}\) = position vector of a point on the plane,
\(\mathbf{b}, \mathbf{c}\) = two non-parallel direction vectors,
\(\lambda, \mu\) = parameters

Scalar (Cartesian) Form:

\[\mathbf{r} \cdot \mathbf{n} = d \quad \text{or} \quad ax + by + cz = d\]

where \(\mathbf{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}\) is normal to the plane

💡 Common Applications

Area of Parallelogram:

\[\text{Area} = |\mathbf{u} \times \mathbf{v}|\]

Area of Triangle:

\[\text{Area} = \frac{1}{2}|\mathbf{u} \times \mathbf{v}|\]

Projection of \(\mathbf{u}\) onto \(\mathbf{v}\):

\[\text{proj}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\mathbf{v}\]

💡 Exam Tip: Most vector formulas are given in the IB formula booklet, including magnitude, scalar product, vector product, and equations of lines. Always check if vectors are perpendicular (dot product = 0) or parallel (one is scalar multiple of other). Use your GDC for calculations. Remember: scalar product gives a number, vector product gives a vector. Label your diagrams clearly!