Three-Dimensional Vectors
Complete Notes & Formulae for Twelfth Grade (Precalculus)
1. Three-Dimensional Vector Notation
Forms of 3D Vectors:
Component Form:
\[ \vec{v} = \langle a, b, c \rangle \]
Unit Vector Form:
\[ \vec{v} = a\vec{i} + b\vec{j} + c\vec{k} \]
where:
• \( \vec{i} = \langle 1, 0, 0 \rangle \) (unit vector along x-axis)
• \( \vec{j} = \langle 0, 1, 0 \rangle \) (unit vector along y-axis)
• \( \vec{k} = \langle 0, 0, 1 \rangle \) (unit vector along z-axis)
2. Component Form of a 3D Vector
Formula:
Given initial point \( P_1(x_1, y_1, z_1) \) and terminal point \( P_2(x_2, y_2, z_2) \):
\[ \vec{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle \]
The components represent displacement in x, y, and z directions
Example:
Find component form: Initial point (1, 2, 3), Terminal point (4, 6, 7)
\( \vec{v} = \langle 4 - 1, 6 - 2, 7 - 3 \rangle = \langle 3, 4, 4 \rangle \)
Or: \( \vec{v} = 3\vec{i} + 4\vec{j} + 4\vec{k} \)
3. Magnitude of a 3D Vector
Formula:
For vector \( \vec{v} = \langle a, b, c \rangle \):
\[ |\vec{v}| = \|\vec{v}\| = \sqrt{a^2 + b^2 + c^2} \]
This is an extension of the Pythagorean theorem to three dimensions
Examples:
Find magnitude: \( \vec{v} = \langle 2, 3, 6 \rangle \)
\( |\vec{v}| = \sqrt{2^2 + 3^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \)
Find magnitude: \( \vec{v} = \langle 1, 2, 2 \rangle \)
\( |\vec{v}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \)
Find magnitude: \( \vec{v} = 2\vec{i} + 3\vec{j} - \vec{k} \)
\( \vec{v} = \langle 2, 3, -1 \rangle \)
\( |\vec{v}| = \sqrt{4 + 9 + 1} = \sqrt{14} \)
4. Add and Subtract 3D Vectors
Addition Formula:
Add corresponding components:
\[ \vec{u} + \vec{v} = \langle a_1, b_1, c_1 \rangle + \langle a_2, b_2, c_2 \rangle \] \[ = \langle a_1 + a_2, b_1 + b_2, c_1 + c_2 \rangle \]
Subtraction Formula:
\[ \vec{u} - \vec{v} = \langle a_1, b_1, c_1 \rangle - \langle a_2, b_2, c_2 \rangle \] \[ = \langle a_1 - a_2, b_1 - b_2, c_1 - c_2 \rangle \]
Examples:
Add: \( \vec{u} = \langle 1, 2, 3 \rangle \) and \( \vec{v} = \langle 4, -1, 2 \rangle \)
\( \vec{u} + \vec{v} = \langle 1 + 4, 2 + (-1), 3 + 2 \rangle \)
\( = \langle 5, 1, 5 \rangle \)
Subtract: \( \vec{u} = \langle 6, 3, 8 \rangle \) and \( \vec{v} = \langle 2, 5, 3 \rangle \)
\( \vec{u} - \vec{v} = \langle 6 - 2, 3 - 5, 8 - 3 \rangle \)
\( = \langle 4, -2, 5 \rangle \)
5. Scalar Multiples of 3D Vectors
Formula:
Multiply each component by the scalar:
\[ k\vec{v} = k\langle a, b, c \rangle = \langle ka, kb, kc \rangle \]
Properties:
• Magnitude: \( |k\vec{v}| = |k| \cdot |\vec{v}| \)
• If \( k > 0 \): direction stays the same
• If \( k < 0 \): direction reverses
• If \( k = 0 \): result is zero vector \( \langle 0, 0, 0 \rangle \)
Examples:
Find: \( 3\vec{v} \) where \( \vec{v} = \langle 2, -1, 4 \rangle \)
\( 3\vec{v} = 3\langle 2, -1, 4 \rangle = \langle 6, -3, 12 \rangle \)
Original magnitude: \( |\vec{v}| = \sqrt{4 + 1 + 16} = \sqrt{21} \)
New magnitude: \( |3\vec{v}| = \sqrt{36 + 9 + 144} = \sqrt{189} = 3\sqrt{21} \)
Find: \( -2\vec{v} \) where \( \vec{v} = \langle 1, 3, -2 \rangle \)
\( -2\vec{v} = -2\langle 1, 3, -2 \rangle = \langle -2, -6, 4 \rangle \)
Direction is reversed (negative scalar)
6. Unit Vectors in 3D
Definition:
A unit vector has magnitude 1. To find the unit vector in the direction of \( \vec{v} \):
\[ \hat{v} = \frac{\vec{v}}{|\vec{v}|} = \frac{1}{|\vec{v}|}\vec{v} = \frac{\langle a, b, c \rangle}{\sqrt{a^2 + b^2 + c^2}} \]
Standard Unit Vectors:
\[ \vec{i} = \langle 1, 0, 0 \rangle \quad \vec{j} = \langle 0, 1, 0 \rangle \quad \vec{k} = \langle 0, 0, 1 \rangle \]
These are orthogonal (perpendicular) to each other
Examples:
Find unit vector: \( \vec{v} = \langle 2, 3, 6 \rangle \)
Magnitude: \( |\vec{v}| = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \)
Unit vector: \( \hat{v} = \frac{1}{7}\langle 2, 3, 6 \rangle = \langle \frac{2}{7}, \frac{3}{7}, \frac{6}{7} \rangle \)
Verify: \( |\hat{v}| = \sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}} = \sqrt{\frac{49}{49}} = 1 \) ✓
Find unit vector: \( \vec{v} = \langle -3, 0, 4 \rangle \)
Magnitude: \( |\vec{v}| = \sqrt{9 + 0 + 16} = \sqrt{25} = 5 \)
Unit vector: \( \hat{v} = \frac{1}{5}\langle -3, 0, 4 \rangle = \langle -\frac{3}{5}, 0, \frac{4}{5} \rangle \)
7. Linear Combinations of 3D Vectors
Definition:
A linear combination uses scalar multiplication and addition:
\[ \vec{w} = c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3 \]
where \( c_1, c_2, c_3 \) are scalars
Standard Form:
Any 3D vector can be written as a linear combination of \( \vec{i}, \vec{j}, \vec{k} \):
\[ \vec{v} = a\vec{i} + b\vec{j} + c\vec{k} \]
Examples:
Find: \( 2\vec{u} + 3\vec{v} \) where \( \vec{u} = \langle 1, 2, 3 \rangle \) and \( \vec{v} = \langle 2, -1, 1 \rangle \)
\( 2\vec{u} = 2\langle 1, 2, 3 \rangle = \langle 2, 4, 6 \rangle \)
\( 3\vec{v} = 3\langle 2, -1, 1 \rangle = \langle 6, -3, 3 \rangle \)
\( 2\vec{u} + 3\vec{v} = \langle 2, 4, 6 \rangle + \langle 6, -3, 3 \rangle = \langle 8, 1, 9 \rangle \)
Find: \( 3\vec{i} - 2\vec{j} + 4\vec{k} \)
\( 3\vec{i} = 3\langle 1, 0, 0 \rangle = \langle 3, 0, 0 \rangle \)
\( -2\vec{j} = -2\langle 0, 1, 0 \rangle = \langle 0, -2, 0 \rangle \)
\( 4\vec{k} = 4\langle 0, 0, 1 \rangle = \langle 0, 0, 4 \rangle \)
Result: \( \langle 3, -2, 4 \rangle \)
Find: \( 2\vec{u} - 3\vec{v} + \vec{w} \) where \( \vec{u} = \langle 1, 0, 2 \rangle \), \( \vec{v} = \langle 2, 1, -1 \rangle \), \( \vec{w} = \langle 0, 3, 1 \rangle \)
\( 2\vec{u} = \langle 2, 0, 4 \rangle \)
\( 3\vec{v} = \langle 6, 3, -3 \rangle \)
\( 2\vec{u} - 3\vec{v} = \langle 2, 0, 4 \rangle - \langle 6, 3, -3 \rangle = \langle -4, -3, 7 \rangle \)
\( 2\vec{u} - 3\vec{v} + \vec{w} = \langle -4, -3, 7 \rangle + \langle 0, 3, 1 \rangle = \langle -4, 0, 8 \rangle \)
8. Quick Reference Summary
Essential Formulas:
Component Form: \( \vec{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle \)
Magnitude: \( |\vec{v}| = \sqrt{a^2 + b^2 + c^2} \)
Addition: \( \vec{u} + \vec{v} = \langle a_1 + a_2, b_1 + b_2, c_1 + c_2 \rangle \)
Scalar Multiplication: \( k\vec{v} = \langle ka, kb, kc \rangle \)
Unit Vector: \( \hat{v} = \frac{\vec{v}}{|\vec{v}|} \)
Standard Unit Vectors: \( \vec{i} = \langle 1, 0, 0 \rangle, \vec{j} = \langle 0, 1, 0 \rangle, \vec{k} = \langle 0, 0, 1 \rangle \)
📚 Study Tips
✓ 3D vectors extend 2D concepts by adding a third component (z)
✓ Magnitude formula uses all three components in the square root
✓ All operations (add, subtract, scalar multiply) work component-wise
✓ Unit vectors always have magnitude = 1
✓ Standard unit vectors i, j, k form a basis for 3D space
