Radical Functions and Equations
📌 What is a Radical Function?
A radical function is a function that contains a variable inside a radical (root) symbol:
- Square Root Function: \( f(x) = \sqrt{x} \)
- Cube Root Function: \( f(x) = \sqrt[3]{x} \)
- General Form: \( f(x) = a\sqrt[n]{x-h} + k \)
Domain and Range of Radical Functions
Square Root Function: \( f(x) = \sqrt{x} \)
Parent Function Properties:
- Domain: \( [0, \infty) \) or \( x \geq 0 \)
- Range: \( [0, \infty) \) or \( y \geq 0 \)
- Starting Point: \( (0, 0) \)
- Increasing: Yes, always increasing
- End Behavior: As \( x \to \infty \), \( f(x) \to \infty \)
Cube Root Function: \( f(x) = \sqrt[3]{x} \)
Parent Function Properties:
- Domain: \( (-\infty, \infty) \) or all real numbers
- Range: \( (-\infty, \infty) \) or all real numbers
- Center Point: \( (0, 0) \)
- Increasing: Yes, always increasing
- Symmetry: Odd function (symmetric about origin)
- Note: Can accept negative inputs (unlike square root)
Finding Domain of Radical Functions:
For square root functions (even index), set the radicand \( \geq 0 \):
If \( f(x) = \sqrt{g(x)} \), then \( g(x) \geq 0 \)
For cube root functions (odd index), all real numbers are allowed:
If \( f(x) = \sqrt[3]{g(x)} \), then domain is all real numbers
📝 Examples - Finding Domain:
Example 1: Find domain of \( f(x) = \sqrt{x - 3} \)
Set radicand \( \geq 0 \): \( x - 3 \geq 0 \)
Solve: \( x \geq 3 \)
Domain: \( [3, \infty) \)
Example 2: Find domain of \( f(x) = \sqrt{5 - 2x} \)
Set radicand \( \geq 0 \): \( 5 - 2x \geq 0 \)
Solve: \( -2x \geq -5 \)
\( x \leq \frac{5}{2} \)
Domain: \( (-\infty, \frac{5}{2}] \)
Example 3: Find domain of \( f(x) = \sqrt[3]{x + 2} \)
Cube root accepts all real numbers
Domain: \( (-\infty, \infty) \)
Graphing Square Root Functions
Standard Form of Square Root Function:
\( f(x) = a\sqrt{x - h} + k \)
Where:
- \( a \) = vertical stretch/compression and reflection
- If \( |a| > 1 \): vertical stretch
- If \( 0 < |a| < 1 \): vertical compression
- If \( a < 0 \): reflection over x-axis
- \( h \) = horizontal shift
- If \( h > 0 \): shift RIGHT by \(h\) units
- If \( h < 0 \): shift LEFT by \(|h|\) units
- \( k \) = vertical shift
- If \( k > 0 \): shift UP by \(k\) units
- If \( k < 0 \): shift DOWN by \(|k|\) units
Key Points for Graphing Square Root Functions:
- Identify the starting point: \( (h, k) \)
- Create a table of values: Use perfect squares for easy calculation
- Apply transformations: stretch/compress, then shift
- Plot points and connect with smooth curve
- Determine domain and range from the graph
📝 Example - Graphing Square Root:
Graph \( f(x) = 2\sqrt{x - 1} + 3 \)
Step 1: Identify transformations:
- \( a = 2 \) → vertical stretch by factor of 2
- \( h = 1 \) → shift right 1 unit
- \( k = 3 \) → shift up 3 units
Step 2: Starting point: \( (1, 3) \)
Step 3: Key points:
\( x = 1 \): \( f(1) = 2\sqrt{0} + 3 = 3 \) → \( (1, 3) \)
\( x = 2 \): \( f(2) = 2\sqrt{1} + 3 = 5 \) → \( (2, 5) \)
\( x = 5 \): \( f(5) = 2\sqrt{4} + 3 = 7 \) → \( (5, 7) \)
\( x = 10 \): \( f(10) = 2\sqrt{9} + 3 = 9 \) → \( (10, 9) \)
Domain: \( [1, \infty) \), Range: \( [3, \infty) \)
Graphing Cube Root Functions
Standard Form of Cube Root Function:
\( f(x) = a\sqrt[3]{x - h} + k \)
Transformations (same as square root):
- \( a \): vertical stretch/compression, reflection
- \( h \): horizontal shift
- \( k \): vertical shift
Key Difference: Cube root graphs extend in BOTH directions (left and right)
Key Points for Cube Root Parent Function:
The parent function \( f(x) = \sqrt[3]{x} \) passes through these key points:
\( (-8, -2) \) because \( \sqrt[3]{-8} = -2 \)
\( (-1, -1) \) because \( \sqrt[3]{-1} = -1 \)
\( (0, 0) \) because \( \sqrt[3]{0} = 0 \) (center point)
\( (1, 1) \) because \( \sqrt[3]{1} = 1 \)
\( (8, 2) \) because \( \sqrt[3]{8} = 2 \)
📝 Example - Graphing Cube Root:
Graph \( f(x) = -\sqrt[3]{x + 2} + 1 \)
Step 1: Identify transformations:
- \( a = -1 \) → reflection over x-axis
- \( h = -2 \) → shift left 2 units
- \( k = 1 \) → shift up 1 unit
Step 2: Center point: \( (-2, 1) \)
Step 3: Key points:
\( x = -10 \): \( f(-10) = -\sqrt[3]{-8} + 1 = -(-2) + 1 = 3 \) → \( (-10, 3) \)
\( x = -3 \): \( f(-3) = -\sqrt[3]{-1} + 1 = -(-1) + 1 = 2 \) → \( (-3, 2) \)
\( x = -2 \): \( f(-2) = -\sqrt[3]{0} + 1 = 1 \) → \( (-2, 1) \)
\( x = -1 \): \( f(-1) = -\sqrt[3]{1} + 1 = 0 \) → \( (-1, 0) \)
\( x = 6 \): \( f(6) = -\sqrt[3]{8} + 1 = -2 + 1 = -1 \) → \( (6, -1) \)
Domain: \( (-\infty, \infty) \), Range: \( (-\infty, \infty) \)
Solving Radical Equations
What is a Radical Equation?
A radical equation is an equation in which the variable appears under a radical symbol.
Examples:
\( \sqrt{x} = 5 \)
\( \sqrt{2x + 3} = x - 1 \)
\( \sqrt[3]{x + 7} = 2 \)
Steps to Solve Radical Equations:
- Isolate the radical on one side of the equation
- Raise both sides to the power that matches the index of the radical
- Square both sides for square roots
- Cube both sides for cube roots
- Solve the resulting equation
- Check ALL solutions in the original equation (very important!)
- Eliminate extraneous solutions (solutions that don't work)
⚠️ Extraneous Solutions:
An extraneous solution is a solution obtained algebraically that does NOT satisfy the original equation.
Why do extraneous solutions occur?
- Squaring both sides can introduce false solutions
- The squared equation may have more solutions than the original
- Always check your answers in the original equation!
📝 Example 1 - Simple Radical Equation:
Solve: \( \sqrt{x + 5} = 7 \)
Step 1: Radical is already isolated
Step 2: Square both sides
\( (\sqrt{x + 5})^2 = 7^2 \)
\( x + 5 = 49 \)
Step 3: Solve for \(x\)
\( x = 44 \)
Step 4: Check in original equation
\( \sqrt{44 + 5} = \sqrt{49} = 7 \) âś“
Solution: \( x = 44 \)
📝 Example 2 - With Extraneous Solution:
Solve: \( \sqrt{2 - x} = x \)
Step 1: Radical is isolated
Step 2: Square both sides
\( (\sqrt{2 - x})^2 = x^2 \)
\( 2 - x = x^2 \)
Step 3: Rearrange and solve
\( x^2 + x - 2 = 0 \)
\( (x + 2)(x - 1) = 0 \)
\( x = -2 \) or \( x = 1 \)
Step 4: Check both solutions
Check \( x = -2 \): \( \sqrt{2-(-2)} = \sqrt{4} = 2 \neq -2 \) âś— (extraneous)
Check \( x = 1 \): \( \sqrt{2-1} = \sqrt{1} = 1 = 1 \) âś“
Solution: \( x = 1 \) (reject \( x = -2 \) as extraneous)
📝 Example 3 - Isolate First:
Solve: \( \sqrt{x + 2} + 4 = x \)
Step 1: Isolate the radical
\( \sqrt{x + 2} = x - 4 \)
Step 2: Square both sides
\( (\sqrt{x + 2})^2 = (x - 4)^2 \)
\( x + 2 = x^2 - 8x + 16 \)
Step 3: Rearrange and solve
\( 0 = x^2 - 9x + 14 \)
\( 0 = (x - 7)(x - 2) \)
\( x = 7 \) or \( x = 2 \)
Step 4: Check both solutions
Check \( x = 7 \): \( \sqrt{7+2} + 4 = 3 + 4 = 7 = 7 \) âś“
Check \( x = 2 \): \( \sqrt{2+2} + 4 = 2 + 4 = 6 \neq 2 \) âś— (extraneous)
Solution: \( x = 7 \)
📝 Example 4 - Cube Root Equation:
Solve: \( \sqrt[3]{2x - 5} = 3 \)
Step 1: Radical is isolated
Step 2: Cube both sides
\( (\sqrt[3]{2x - 5})^3 = 3^3 \)
\( 2x - 5 = 27 \)
Step 3: Solve for \(x\)
\( 2x = 32 \)
\( x = 16 \)
Step 4: Check
\( \sqrt[3]{2(16) - 5} = \sqrt[3]{27} = 3 \) âś“
Solution: \( x = 16 \)
Note: Cube root equations rarely have extraneous solutions (but still check!)
⚡ Quick Summary
- Square root function domain: Set radicand \( \geq 0 \)
- Cube root function domain: All real numbers
- Standard form: \( f(x) = a\sqrt[n]{x-h} + k \)
- \(a\): vertical stretch/compression and reflection
- \(h\): horizontal shift (opposite sign)
- \(k\): vertical shift
- To solve radical equations: Isolate, raise to power, solve, CHECK!
- Extraneous solutions: Algebraic solutions that don't work in original
- Always verify solutions by substituting into original equation
- Square root graphs start at a point and curve upward
- Cube root graphs extend in both directions through center point
📚 Key Formulas Reference
Square Root Function (Parent):
\( f(x) = \sqrt{x} \)
Domain: \( [0, \infty) \), Range: \( [0, \infty) \)
Cube Root Function (Parent):
\( f(x) = \sqrt[3]{x} \)
Domain: \( (-\infty, \infty) \), Range: \( (-\infty, \infty) \)
Transformed Square Root:
\( f(x) = a\sqrt{x-h} + k \)
Transformed Cube Root:
\( f(x) = a\sqrt[3]{x-h} + k \)
Solving Square Root Equations:
If \( \sqrt{f(x)} = g(x) \), then \( f(x) = [g(x)]^2 \)
Solving Cube Root Equations:
If \( \sqrt[3]{f(x)} = g(x) \), then \( f(x) = [g(x)]^3 \)
