Basic Math

Radical functions and equations | Eleventh Grade

Radical Functions and Equations

📌 What is a Radical Function?

A radical function is a function that contains a variable inside a radical (root) symbol:

  • Square Root Function: \( f(x) = \sqrt{x} \)
  • Cube Root Function: \( f(x) = \sqrt[3]{x} \)
  • General Form: \( f(x) = a\sqrt[n]{x-h} + k \)

Domain and Range of Radical Functions

Square Root Function: \( f(x) = \sqrt{x} \)

Parent Function Properties:

  • Domain: \( [0, \infty) \) or \( x \geq 0 \)
  • Range: \( [0, \infty) \) or \( y \geq 0 \)
  • Starting Point: \( (0, 0) \)
  • Increasing: Yes, always increasing
  • End Behavior: As \( x \to \infty \), \( f(x) \to \infty \)

Cube Root Function: \( f(x) = \sqrt[3]{x} \)

Parent Function Properties:

  • Domain: \( (-\infty, \infty) \) or all real numbers
  • Range: \( (-\infty, \infty) \) or all real numbers
  • Center Point: \( (0, 0) \)
  • Increasing: Yes, always increasing
  • Symmetry: Odd function (symmetric about origin)
  • Note: Can accept negative inputs (unlike square root)

Finding Domain of Radical Functions:

For square root functions (even index), set the radicand \( \geq 0 \):

If \( f(x) = \sqrt{g(x)} \), then \( g(x) \geq 0 \)

For cube root functions (odd index), all real numbers are allowed:

If \( f(x) = \sqrt[3]{g(x)} \), then domain is all real numbers

📝 Examples - Finding Domain:

Example 1: Find domain of \( f(x) = \sqrt{x - 3} \)

Set radicand \( \geq 0 \): \( x - 3 \geq 0 \)
Solve: \( x \geq 3 \)
Domain: \( [3, \infty) \)

Example 2: Find domain of \( f(x) = \sqrt{5 - 2x} \)

Set radicand \( \geq 0 \): \( 5 - 2x \geq 0 \)
Solve: \( -2x \geq -5 \)
\( x \leq \frac{5}{2} \)
Domain: \( (-\infty, \frac{5}{2}] \)

Example 3: Find domain of \( f(x) = \sqrt[3]{x + 2} \)

Cube root accepts all real numbers
Domain: \( (-\infty, \infty) \)

Graphing Square Root Functions

Standard Form of Square Root Function:

\( f(x) = a\sqrt{x - h} + k \)

Where:

  • \( a \) = vertical stretch/compression and reflection
    • If \( |a| > 1 \): vertical stretch
    • If \( 0 < |a| < 1 \): vertical compression
    • If \( a < 0 \): reflection over x-axis
  • \( h \) = horizontal shift
    • If \( h > 0 \): shift RIGHT by \(h\) units
    • If \( h < 0 \): shift LEFT by \(|h|\) units
  • \( k \) = vertical shift
    • If \( k > 0 \): shift UP by \(k\) units
    • If \( k < 0 \): shift DOWN by \(|k|\) units

Key Points for Graphing Square Root Functions:

  1. Identify the starting point: \( (h, k) \)
  2. Create a table of values: Use perfect squares for easy calculation
  3. Apply transformations: stretch/compress, then shift
  4. Plot points and connect with smooth curve
  5. Determine domain and range from the graph

📝 Example - Graphing Square Root:

Graph \( f(x) = 2\sqrt{x - 1} + 3 \)

Step 1: Identify transformations:

  • \( a = 2 \) → vertical stretch by factor of 2
  • \( h = 1 \) → shift right 1 unit
  • \( k = 3 \) → shift up 3 units

Step 2: Starting point: \( (1, 3) \)

Step 3: Key points:

\( x = 1 \): \( f(1) = 2\sqrt{0} + 3 = 3 \) → \( (1, 3) \)
\( x = 2 \): \( f(2) = 2\sqrt{1} + 3 = 5 \) → \( (2, 5) \)
\( x = 5 \): \( f(5) = 2\sqrt{4} + 3 = 7 \) → \( (5, 7) \)
\( x = 10 \): \( f(10) = 2\sqrt{9} + 3 = 9 \) → \( (10, 9) \)

Domain: \( [1, \infty) \), Range: \( [3, \infty) \)

Graphing Cube Root Functions

Standard Form of Cube Root Function:

\( f(x) = a\sqrt[3]{x - h} + k \)

Transformations (same as square root):

  • \( a \): vertical stretch/compression, reflection
  • \( h \): horizontal shift
  • \( k \): vertical shift

Key Difference: Cube root graphs extend in BOTH directions (left and right)

Key Points for Cube Root Parent Function:

The parent function \( f(x) = \sqrt[3]{x} \) passes through these key points:

\( (-8, -2) \) because \( \sqrt[3]{-8} = -2 \)
\( (-1, -1) \) because \( \sqrt[3]{-1} = -1 \)
\( (0, 0) \) because \( \sqrt[3]{0} = 0 \) (center point)
\( (1, 1) \) because \( \sqrt[3]{1} = 1 \)
\( (8, 2) \) because \( \sqrt[3]{8} = 2 \)

📝 Example - Graphing Cube Root:

Graph \( f(x) = -\sqrt[3]{x + 2} + 1 \)

Step 1: Identify transformations:

  • \( a = -1 \) → reflection over x-axis
  • \( h = -2 \) → shift left 2 units
  • \( k = 1 \) → shift up 1 unit

Step 2: Center point: \( (-2, 1) \)

Step 3: Key points:

\( x = -10 \): \( f(-10) = -\sqrt[3]{-8} + 1 = -(-2) + 1 = 3 \) → \( (-10, 3) \)
\( x = -3 \): \( f(-3) = -\sqrt[3]{-1} + 1 = -(-1) + 1 = 2 \) → \( (-3, 2) \)
\( x = -2 \): \( f(-2) = -\sqrt[3]{0} + 1 = 1 \) → \( (-2, 1) \)
\( x = -1 \): \( f(-1) = -\sqrt[3]{1} + 1 = 0 \) → \( (-1, 0) \)
\( x = 6 \): \( f(6) = -\sqrt[3]{8} + 1 = -2 + 1 = -1 \) → \( (6, -1) \)

Domain: \( (-\infty, \infty) \), Range: \( (-\infty, \infty) \)

Solving Radical Equations

What is a Radical Equation?

A radical equation is an equation in which the variable appears under a radical symbol.

Examples:

\( \sqrt{x} = 5 \)
\( \sqrt{2x + 3} = x - 1 \)
\( \sqrt[3]{x + 7} = 2 \)

Steps to Solve Radical Equations:

  1. Isolate the radical on one side of the equation
  2. Raise both sides to the power that matches the index of the radical
    • Square both sides for square roots
    • Cube both sides for cube roots
  3. Solve the resulting equation
  4. Check ALL solutions in the original equation (very important!)
  5. Eliminate extraneous solutions (solutions that don't work)

⚠️ Extraneous Solutions:

An extraneous solution is a solution obtained algebraically that does NOT satisfy the original equation.

Why do extraneous solutions occur?

  • Squaring both sides can introduce false solutions
  • The squared equation may have more solutions than the original
  • Always check your answers in the original equation!

📝 Example 1 - Simple Radical Equation:

Solve: \( \sqrt{x + 5} = 7 \)

Step 1: Radical is already isolated

Step 2: Square both sides

\( (\sqrt{x + 5})^2 = 7^2 \)
\( x + 5 = 49 \)

Step 3: Solve for \(x\)

\( x = 44 \)

Step 4: Check in original equation

\( \sqrt{44 + 5} = \sqrt{49} = 7 \) âś“

Solution: \( x = 44 \)

📝 Example 2 - With Extraneous Solution:

Solve: \( \sqrt{2 - x} = x \)

Step 1: Radical is isolated

Step 2: Square both sides

\( (\sqrt{2 - x})^2 = x^2 \)
\( 2 - x = x^2 \)

Step 3: Rearrange and solve

\( x^2 + x - 2 = 0 \)
\( (x + 2)(x - 1) = 0 \)
\( x = -2 \) or \( x = 1 \)

Step 4: Check both solutions

Check \( x = -2 \): \( \sqrt{2-(-2)} = \sqrt{4} = 2 \neq -2 \) âś— (extraneous)
Check \( x = 1 \): \( \sqrt{2-1} = \sqrt{1} = 1 = 1 \) âś“

Solution: \( x = 1 \) (reject \( x = -2 \) as extraneous)

📝 Example 3 - Isolate First:

Solve: \( \sqrt{x + 2} + 4 = x \)

Step 1: Isolate the radical

\( \sqrt{x + 2} = x - 4 \)

Step 2: Square both sides

\( (\sqrt{x + 2})^2 = (x - 4)^2 \)
\( x + 2 = x^2 - 8x + 16 \)

Step 3: Rearrange and solve

\( 0 = x^2 - 9x + 14 \)
\( 0 = (x - 7)(x - 2) \)
\( x = 7 \) or \( x = 2 \)

Step 4: Check both solutions

Check \( x = 7 \): \( \sqrt{7+2} + 4 = 3 + 4 = 7 = 7 \) âś“
Check \( x = 2 \): \( \sqrt{2+2} + 4 = 2 + 4 = 6 \neq 2 \) âś— (extraneous)

Solution: \( x = 7 \)

📝 Example 4 - Cube Root Equation:

Solve: \( \sqrt[3]{2x - 5} = 3 \)

Step 1: Radical is isolated

Step 2: Cube both sides

\( (\sqrt[3]{2x - 5})^3 = 3^3 \)
\( 2x - 5 = 27 \)

Step 3: Solve for \(x\)

\( 2x = 32 \)
\( x = 16 \)

Step 4: Check

\( \sqrt[3]{2(16) - 5} = \sqrt[3]{27} = 3 \) âś“

Solution: \( x = 16 \)

Note: Cube root equations rarely have extraneous solutions (but still check!)

⚡ Quick Summary

  • Square root function domain: Set radicand \( \geq 0 \)
  • Cube root function domain: All real numbers
  • Standard form: \( f(x) = a\sqrt[n]{x-h} + k \)
  • \(a\): vertical stretch/compression and reflection
  • \(h\): horizontal shift (opposite sign)
  • \(k\): vertical shift
  • To solve radical equations: Isolate, raise to power, solve, CHECK!
  • Extraneous solutions: Algebraic solutions that don't work in original
  • Always verify solutions by substituting into original equation
  • Square root graphs start at a point and curve upward
  • Cube root graphs extend in both directions through center point

📚 Key Formulas Reference

Square Root Function (Parent):

\( f(x) = \sqrt{x} \)
Domain: \( [0, \infty) \), Range: \( [0, \infty) \)

Cube Root Function (Parent):

\( f(x) = \sqrt[3]{x} \)
Domain: \( (-\infty, \infty) \), Range: \( (-\infty, \infty) \)

Transformed Square Root:

\( f(x) = a\sqrt{x-h} + k \)

Transformed Cube Root:

\( f(x) = a\sqrt[3]{x-h} + k \)

Solving Square Root Equations:

If \( \sqrt{f(x)} = g(x) \), then \( f(x) = [g(x)]^2 \)

Solving Cube Root Equations:

If \( \sqrt[3]{f(x)} = g(x) \), then \( f(x) = [g(x)]^3 \)

Shares: