Matrices
Complete Notes & Formulae for Eleventh Grade (Algebra 2)
1. Matrix Vocabulary
What is a Matrix?
A rectangular array of numbers arranged in rows and columns, enclosed in brackets
\[ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \]
Key Terms:
Dimension (Order):
Number of rows × number of columns (m × n)
Element (Entry):
\( a_{ij} \) = element in row i, column j
Square Matrix:
Matrix with same number of rows and columns (n × n)
Zero Matrix:
Matrix with all entries equal to 0
Identity Matrix (I):
Square matrix with 1's on main diagonal and 0's elsewhere
Example: \( I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
Equal Matrices:
Same dimensions and corresponding elements are equal
2. Matrix Operation Rules
Addition/Subtraction:
• Matrices must have the SAME dimensions
Scalar Multiplication:
• Can multiply any matrix by a scalar (number)
Matrix Multiplication (A × B):
• Number of columns in A must equal number of rows in B
• If A is m × n and B is n × p, then AB is m × p
• NOT commutative: AB ≠ BA (usually)
Determinant:
• Only defined for SQUARE matrices
Inverse:
• Only square matrices can have inverses
• Inverse exists only if determinant ≠ 0
3. Add and Subtract Matrices
Formula:
Add or subtract corresponding elements
\[ A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix} \]
\[ A - B = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} \\ a_{21} - b_{21} & a_{22} - b_{22} \end{bmatrix} \]
Example:
\( \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix} \)
4. Multiply a Matrix by a Scalar
Formula:
Multiply every element by the scalar
\[ kA = \begin{bmatrix} ka_{11} & ka_{12} \\ ka_{21} & ka_{22} \end{bmatrix} \]
Example:
\( 3 \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 3 & 15 \end{bmatrix} \)
5. Multiply Two Matrices
Formula (Row × Column):
Element in row i, column j of AB is the dot product of row i of A with column j of B
\[ (AB)_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} \]
Key Rule:
• Multiply row elements by column elements, then add
• AB exists only if columns of A = rows of B
• AB ≠ BA (not commutative)
Example:
\( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \)
First element: (1)(5) + (2)(7) = 5 + 14 = 19
6. Properties of Matrices
Addition Properties:
• Commutative: A + B = B + A
• Associative: (A + B) + C = A + (B + C)
• Identity: A + O = A (O is zero matrix)
Multiplication Properties:
• Associative: (AB)C = A(BC)
• Distributive: A(B + C) = AB + AC
• Identity: AI = IA = A
• NOT Commutative: AB ≠ BA (usually)
Scalar Multiplication:
• k(A + B) = kA + kB
• (k + m)A = kA + mA
7. Determinant of a Matrix
2×2 Matrix:
\[ \det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \]
3×3 Matrix (Expansion by First Row):
\[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a\begin{vmatrix} e & f \\ h & i \end{vmatrix} - b\begin{vmatrix} d & f \\ g & i \end{vmatrix} + c\begin{vmatrix} d & e \\ g & h \end{vmatrix} \]
= a(ei - fh) - b(di - fg) + c(dh - eg)
Example:
\( \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} = (3)(4) - (2)(1) = 12 - 2 = 10 \)
8. Is a Matrix Invertible?
Test for Invertibility:
✓ Matrix IS invertible if:
• It is a SQUARE matrix
• Determinant ≠ 0
✗ Matrix is NOT invertible if:
• It is not square
• Determinant = 0 (called "singular")
9. Inverse of a Matrix
Definition:
The inverse \( A^{-1} \) of matrix A satisfies:
\[ AA^{-1} = A^{-1}A = I \]
Formula for 2×2 Matrix:
\[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]
\[ A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]
where ad - bc ≠ 0
Example:
Find inverse of \( A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \)
det(A) = (3)(4) - (2)(1) = 10
\( A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 0.4 & -0.2 \\ -0.1 & 0.3 \end{bmatrix} \)
10. Solve Matrix Equations Using Inverses
Method:
To solve AX = B for matrix X:
\[ X = A^{-1}B \]
Steps:
1. Find \( A^{-1} \)
2. Multiply both sides by \( A^{-1} \) on the left
3. Simplify: \( A^{-1}AX = A^{-1}B \)
4. Result: \( IX = A^{-1}B \), so \( X = A^{-1}B \)
11. Transformation Matrices
Common 2D Transformations:
Reflection over x-axis:
\( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)
Reflection over y-axis:
\( \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \)
Rotation 90° counterclockwise:
\( \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \)
Rotation 180°:
\( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)
Dilation by factor k:
\( \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \)
Vertex Matrix:
To transform a shape, organize vertices as columns in a matrix, then multiply by transformation matrix
\( \text{Image} = \text{Transformation Matrix} \times \text{Vertex Matrix} \)
12. Solve Systems Using Augmented Matrices
Augmented Matrix:
Combine coefficient matrix with constants, separated by vertical bar
System: \( \begin{cases} 2x + 3y = 8 \\ x - y = 1 \end{cases} \)
\[ \left[\begin{array}{cc|c} 2 & 3 & 8 \\ 1 & -1 & 1 \end{array}\right] \]
Row Operations (Gaussian Elimination):
1. Swap two rows
2. Multiply a row by a nonzero constant
3. Add a multiple of one row to another row
Goal: Reduce to row echelon form (REF) or reduced row echelon form (RREF)
Row Echelon Form (REF):
• Leading entry (first nonzero) in each row is 1
• Leading 1's move to the right in successive rows
• All entries below leading 1 are 0
13. Quick Reference Summary
Key Formulas:
Addition: A + B (same dimensions)
Scalar Multiplication: kA
Matrix Multiplication: AB (columns of A = rows of B)
Determinant (2×2): \( |A| = ad - bc \)
Inverse (2×2): \( A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \)
Solve AX = B: \( X = A^{-1}B \)
📚 Study Tips
✓ Always check dimensions before performing operations
✓ Matrix multiplication is NOT commutative: AB ≠ BA
✓ A matrix is invertible only if its determinant ≠ 0
✓ Use augmented matrices for solving systems of equations
✓ Transformation matrices multiply vertex matrices to transform shapes
