Basic Math

Logarithms | Twelfth Grade

Logarithms

Complete Notes & Formulae for Twelfth Grade (Precalculus)

1. Convert Between Exponential and Logarithmic Form

Definition:

A logarithm is the inverse of an exponential function. It answers the question: "To what power must we raise the base to get this number?"

\[ b^x = y \quad \Leftrightarrow \quad \log_b y = x \]

Read as: "log base b of y equals x"

Key Components:

b = base (must be positive, b ≠ 1)

x = exponent (logarithm value)

y = result/argument (must be positive)

Conversion Examples:

Exponential FormLogarithmic Form
\( 2^3 = 8 \)\( \log_2 8 = 3 \)
\( 10^2 = 100 \)\( \log_{10} 100 = 2 \)
\( 5^0 = 1 \)\( \log_5 1 = 0 \)
\( 3^{-2} = \frac{1}{9} \)\( \log_3 \frac{1}{9} = -2 \)
\( e^x = y \)\( \ln y = x \)

Common Logarithms:

Common log: \( \log x = \log_{10} x \) (base 10)

Natural log: \( \ln x = \log_e x \) (base e ≈ 2.718)

2. Evaluate Logarithms

Basic Evaluation:

Method:

Ask yourself: "What power of the base gives the argument?"

\[ \log_b y = x \text{ means } b^x = y \]

Examples:

Evaluate: \( \log_2 16 \)

Ask: 2 to what power equals 16?

\( 2^4 = 16 \)

Therefore: \( \log_2 16 = 4 \)

Evaluate: \( \log_5 \frac{1}{25} \)

Ask: 5 to what power equals 1/25?

\( 5^{-2} = \frac{1}{25} \)

Therefore: \( \log_5 \frac{1}{25} = -2 \)

Special Values:

• \( \log_b 1 = 0 \) (any base to the 0 power = 1)

• \( \log_b b = 1 \) (base to the 1st power = itself)

• \( \log_b b^x = x \) (inverse property)

3. Change of Base Formula

Formula:

\[ \log_b a = \frac{\log_c a}{\log_c b} \]

where c is any positive base (commonly 10 or e)

Common Forms:

\[ \log_b a = \frac{\log a}{\log b} \quad \text{(using base 10)} \]

\[ \log_b a = \frac{\ln a}{\ln b} \quad \text{(using base e)} \]

When to Use:

• To evaluate logarithms with bases other than 10 or e on a calculator

• To compare logarithms with different bases

• To simplify expressions with multiple bases

Example:

Evaluate: \( \log_5 20 \)

Using change of base formula:

\( \log_5 20 = \frac{\log 20}{\log 5} = \frac{1.301}{0.699} \approx 1.861 \)

Or using natural log:

\( \log_5 20 = \frac{\ln 20}{\ln 5} \approx 1.861 \)

4. Product Property of Logarithms

Property:

The logarithm of a product equals the sum of the logarithms

\[ \log_b(MN) = \log_b M + \log_b N \]

Examples:

• \( \log_2(8 \times 4) = \log_2 8 + \log_2 4 = 3 + 2 = 5 \)

• \( \ln(xy) = \ln x + \ln y \)

• \( \log_3(9 \times 27) = \log_3 9 + \log_3 27 = 2 + 3 = 5 \)

5. Quotient Property of Logarithms

Property:

The logarithm of a quotient equals the difference of the logarithms

\[ \log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N \]

Examples:

• \( \log_2\left(\frac{32}{4}\right) = \log_2 32 - \log_2 4 = 5 - 2 = 3 \)

• \( \ln\left(\frac{x}{y}\right) = \ln x - \ln y \)

• \( \log\left(\frac{100}{10}\right) = \log 100 - \log 10 = 2 - 1 = 1 \)

6. Power Property of Logarithms

Property:

The logarithm of a power equals the exponent times the logarithm

\[ \log_b(M^p) = p \cdot \log_b M \]

Examples:

• \( \log_2(8^3) = 3 \log_2 8 = 3(3) = 9 \)

• \( \ln(x^5) = 5 \ln x \)

• \( \log(100^2) = 2 \log 100 = 2(2) = 4 \)

• \( \log_3(\sqrt{9}) = \log_3(9^{1/2}) = \frac{1}{2}\log_3 9 = \frac{1}{2}(2) = 1 \)

7. Properties of Logarithms: Mixed Review

All Properties Summary:

PropertyFormulaDescription
Product\( \log_b(MN) = \log_b M + \log_b N \)Log of product = sum of logs
Quotient\( \log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N \)Log of quotient = difference of logs
Power\( \log_b(M^p) = p \log_b M \)Log of power = exponent × log
Change of Base\( \log_b a = \frac{\log_c a}{\log_c b} \)Convert to different base
Identity\( \log_b b^x = x \)Inverse property
Zero Property\( \log_b 1 = 0 \)Log of 1 is always 0
Base Property\( \log_b b = 1 \)Log base of itself is 1

Combined Example:

Expand: \( \log_2\left(\frac{x^3y}{z^2}\right) \)

Step 1: Apply quotient property:

\( \log_2(x^3y) - \log_2(z^2) \)

Step 2: Apply product property to first term:

\( \log_2(x^3) + \log_2 y - \log_2(z^2) \)

Step 3: Apply power property:

\( 3\log_2 x + \log_2 y - 2\log_2 z \)

8. Evaluate Logarithms Using Properties

Strategy:

1. Break down complex arguments using properties

2. Simplify to logarithms you can evaluate

3. Use known values to find the answer

Example 1 (Condensing):

Condense: \( 2\log_3 x + \log_3 y - 3\log_3 z \)

Step 1: Apply power property:

\( \log_3(x^2) + \log_3 y - \log_3(z^3) \)

Step 2: Apply product property:

\( \log_3(x^2y) - \log_3(z^3) \)

Step 3: Apply quotient property:

\( \log_3\left(\frac{x^2y}{z^3}\right) \)

Example 2 (Evaluating):

Given: \( \log_2 3 = 1.585 \) and \( \log_2 5 = 2.322 \)

Find: \( \log_2 15 \)

Recognize: \( 15 = 3 \times 5 \)

Apply product property:

\( \log_2 15 = \log_2(3 \times 5) = \log_2 3 + \log_2 5 \)

\( = 1.585 + 2.322 = 3.907 \)

Example 3 (Complex):

Evaluate: \( \log_2 32 - \log_2 4 + \log_2 8 \)

Method 1: Evaluate each separately

\( = 5 - 2 + 3 = 6 \)

Method 2: Combine first

\( = \log_2\left(\frac{32 \times 8}{4}\right) = \log_2 64 = 6 \)

9. Quick Reference Summary

Essential Formulas:

Definition: \( b^x = y \Leftrightarrow \log_b y = x \)

Product: \( \log_b(MN) = \log_b M + \log_b N \)

Quotient: \( \log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N \)

Power: \( \log_b(M^p) = p\log_b M \)

Change of Base: \( \log_b a = \frac{\log a}{\log b} \)

Special: \( \log_b 1 = 0 \), \( \log_b b = 1 \), \( \log_b b^x = x \)

📚 Study Tips

✓ Logarithms are the inverse of exponential functions

✓ Product property turns multiplication into addition

✓ Quotient property turns division into subtraction

✓ Power property brings exponents down as coefficients

✓ Use change of base formula for calculator evaluations

Shares: