IB Mathematics: Analysis & Approaches (AA)
Complete Examination Cheatsheet - SL & HL
1. Number & Algebra
Sequences & Series
Arithmetic Sequences
General Term: \(u_n = u_1 + (n-1)d\)
Sum Formula: \(S_n = \frac{n}{2}[2u_1 + (n-1)d]\) or \(S_n = \frac{n}{2}(u_1 + u_n)\)
Where \(d\) is the common difference: \(d = u_{n+1} - u_n\)
Problem: Find the 20th term and sum of first 20 terms for the sequence: 3, 7, 11, 15, ...
Solution:
First, identify: \(u_1 = 3\), \(d = 7 - 3 = 4\)
20th term: \(u_{20} = 3 + (20-1) \cdot 4 = 3 + 76 = 79\)
Sum of first 20 terms: \(S_{20} = \frac{20}{2}(3 + 79) = 10 \cdot 82 = 820\)
Geometric Sequences
General Term: \(u_n = u_1 r^{n-1}\)
Sum Formula (finite): \(S_n = u_1 \frac{1-r^n}{1-r}\) (when \(r \neq 1\))
Sum to Infinity: \(S_\infty = \frac{u_1}{1-r}\) (when \(|r| < 1\))
Where \(r\) is the common ratio: \(r = \frac{u_{n+1}}{u_n}\)
Problem: A ball bounces to 80% of its previous height. If dropped from 10m, find total distance traveled.
Solution:
Downward distances: 10 + 8 + 6.4 + 5.12 + \ldots
This is geometric with \(u_1 = 10\), \(r = 0.8\)
Upward distances: 8 + 6.4 + 5.12 + \ldots
This is geometric with \(u_1 = 8\), \(r = 0.8\)
Total distance: \(10 + 2 \cdot \frac{8}{1-0.8} = 10 + 2 \cdot 40 = 90\) meters
Mathematical Induction (HL)
Steps:
- Base Case: Prove \(P(1)\) is true
- Inductive Step: Assume \(P(k)\) is true, prove \(P(k+1)\) is true
- Conclusion: By mathematical induction, \(P(n)\) is true for all \(n \geq 1\)
Exponents & Logarithms
Exponential Laws
\(a^m \cdot a^n = a^{m+n}\)
\(\frac{a^m}{a^n} = a^{m-n}\)
\((a^m)^n = a^{mn}\)
\((ab)^n = a^n b^n\)
\(a^{-n} = \frac{1}{a^n}\)
\(a^{1/n} = \sqrt[n]{a}\)
\(a^0 = 1\) (when \(a \neq 0\))
Logarithm Properties
\(\log_a(xy) = \log_a x + \log_a y\)
\(\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y\)
\(\log_a(x^n) = n\log_a x\)
\(\log_a a = 1\)
\(\log_a 1 = 0\)
Change of Base: \(\log_a x = \frac{\log_b x}{\log_b a}\)
Inverse Property: \(a^{\log_a x} = x\) and \(\log_a(a^x) = x\)
Problem: A bacteria population doubles every 3 hours. If initially 1000 bacteria, find population after 12 hours.
Solution:
Exponential model: \(P(t) = P_0 \cdot 2^{t/3}\)
Where \(P_0 = 1000\), \(t\) is time in hours
After 12 hours: \(P(12) = 1000 \cdot 2^{12/3} = 1000 \cdot 2^4 = 1000 \cdot 16 = 16000\)
Binomial Theorem
Binomial Expansion
\((a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\)
General Term: \(T_{k+1} = \binom{n}{k} a^{n-k} b^k\)
Binomial Coefficient: \(\binom{n}{k} = \frac{n!}{k!(n-k)!}\)
Pascal's Triangle Properties: \(\binom{n}{k} = \binom{n}{n-k}\)
\(\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}\)
Problem: Find the coefficient of \(x^5\) in \((2x - 3)^8\)
Solution:
Using \((a+b)^n\) with \(a = 2x\), \(b = -3\), \(n = 8\)
General term: \(T_{k+1} = \binom{8}{k}(2x)^{8-k}(-3)^k\)
For \(x^5\) term: \(8-k = 5\), so \(k = 3\)
\(T_4 = \binom{8}{3}(2x)^5(-3)^3 = 56 \cdot 32x^5 \cdot (-27) = -48384x^5\)
Coefficient of \(x^5\): -48384
Complex Numbers (HL)
Rectangular Form
\(z = a + bi\) where \(i^2 = -1\)
Addition: \((a+bi) + (c+di) = (a+c) + (b+d)i\)
Multiplication: \((a+bi)(c+di) = (ac-bd) + (ad+bc)i\)
Complex Conjugate: \(\overline{z} = a - bi\)
Modulus: \(|z| = \sqrt{a^2 + b^2}\)
Argument: \(\arg(z) = \arctan\left(\frac{b}{a}\right)\)
Polar Form & De Moivre's Theorem
Polar Form: \(z = r(\cos \theta + i\sin \theta) = re^{i\theta}\)
De Moivre's Theorem: \(z^n = r^n(\cos(n\theta) + i\sin(n\theta))\)
nth Roots: \(z^{1/n} = r^{1/n}\left(\cos\frac{\theta + 2\pi k}{n} + i\sin\frac{\theta + 2\pi k}{n}\right)\)
where \(k = 0, 1, 2, \ldots, n-1\)
2. Functions
Function Basics
Definitions & Notation
Function: A relation where each input has exactly one output
Domain: Set of all possible input values (x-values)
Range: Set of all possible output values (y-values)
Composition: \((f \circ g)(x) = f(g(x))\)
Inverse Function: \(f^{-1}(f(x)) = x\) and \(f(f^{-1}(x)) = x\)
Function Types
Injective (One-to-one): \(f(a) = f(b) \Rightarrow a = b\)
Surjective (Onto): Every element in codomain has pre-image
Bijective: Both injective and surjective
Even Function: \(f(-x) = f(x)\) (symmetric about y-axis)
Odd Function: \(f(-x) = -f(x)\) (symmetric about origin)
Transformations
Basic Transformations
Vertical Translation: \(f(x) + k\) (up k units if k > 0)
Horizontal Translation: \(f(x - h)\) (right h units if h > 0)
Vertical Scaling: \(a \cdot f(x)\) (stretch by factor |a|)
Horizontal Scaling: \(f(bx)\) (compress by factor 1/|b|)
Reflections:
- \(-f(x)\): reflect over x-axis
- \(f(-x)\): reflect over y-axis
Problem: Describe the transformation from \(f(x) = x^2\) to \(g(x) = -2(x+3)^2 + 1\)
Solution:
Starting with \(f(x) = x^2\):
- \(f(x+3) = (x+3)^2\) → horizontal translation 3 units left
- \(2f(x+3) = 2(x+3)^2\) → vertical stretch factor 2
- \(-2f(x+3) = -2(x+3)^2\) → reflection over x-axis
- \(-2f(x+3) + 1 = -2(x+3)^2 + 1\) → vertical translation 1 unit up
Function Families
Polynomial Functions
General Form: \(f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0\)
Degree n Properties:
- At most n real roots
- At most n-1 turning points
- End behavior determined by leading term \(a_n x^n\)
Rational Functions
General Form: \(f(x) = \frac{P(x)}{Q(x)}\) where P(x), Q(x) are polynomials
Vertical Asymptotes: Values where Q(x) = 0 but P(x) ≠ 0
Horizontal Asymptotes:
- If deg(P) < deg(Q): y = 0
- If deg(P) = deg(Q): y = leading coefficient ratio
- If deg(P) > deg(Q): no horizontal asymptote
3. Geometry & Trigonometry
Trigonometric Functions
Unit Circle & Exact Values
Angle | \(\sin \theta\) | \(\cos \theta\) | \(\tan \theta\) |
---|---|---|---|
0° | 0 | 1 | 0 |
30° | \(\frac{1}{2}\) | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{\sqrt{3}}\) |
45° | \(\frac{\sqrt{2}}{2}\) | \(\frac{\sqrt{2}}{2}\) | 1 |
60° | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{2}\) | \(\sqrt{3}\) |
90° | 1 | 0 | undefined |
Radian Conversion: \(\theta_{rad} = \theta_{deg} \times \frac{\pi}{180}\)
Trigonometric Identities
Pythagorean Identities:
\(\sin^2 \theta + \cos^2 \theta = 1\)
\(1 + \tan^2 \theta = \sec^2 \theta\)
\(1 + \cot^2 \theta = \csc^2 \theta\)
Compound Angle Formulas:
\(\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B\)
\(\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B\)
\(\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}\)
Double Angle Formulas:
\(\sin 2\theta = 2\sin \theta \cos \theta\)
\(\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta\)
\(\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}\)
Triangle Geometry
Sine & Cosine Rules
Sine Rule: \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R\)
where R is the circumradius
Cosine Rule: \(c^2 = a^2 + b^2 - 2ab\cos C\)
or \(\cos C = \frac{a^2 + b^2 - c^2}{2ab}\)
Area Formulas:
\(\text{Area} = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B\)
\(\text{Area} = \sqrt{s(s-a)(s-b)(s-c)}\) (Heron's formula)
where \(s = \frac{a+b+c}{2}\) is the semi-perimeter
Problem: In triangle ABC, a = 8, b = 10, A = 30°. Find all possible values of B.
Solution:
Using sine rule: \(\frac{\sin B}{b} = \frac{\sin A}{a}\)
\(\sin B = \frac{b \sin A}{a} = \frac{10 \sin 30°}{8} = \frac{10 \times 0.5}{8} = 0.625\)
Since \(\sin B = 0.625\), we have two possibilities:
\(B_1 = \arcsin(0.625) ≈ 38.7°\)
\(B_2 = 180° - 38.7° = 141.3°\)
Check: \(A + B_2 = 30° + 141.3° = 171.3° < 180°\) ✓
Answer: B ≈ 38.7° or B ≈ 141.3°
Vectors
2D Vector Operations
Vector Notation: \(\vec{a} = \begin{pmatrix} x \\ y \end{pmatrix}\) or \(\vec{a} = x\vec{i} + y\vec{j}\)
Magnitude: \(|\vec{a}| = \sqrt{x^2 + y^2}\)
Unit Vector: \(\hat{a} = \frac{\vec{a}}{|\vec{a}|}\)
Addition: \(\vec{a} + \vec{b} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}\)
Scalar Product: \(\vec{a} \cdot \vec{b} = x_1x_2 + y_1y_2 = |\vec{a}||\vec{b}|\cos \theta\)
Angle Between Vectors: \(\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\)
3D Vectors (HL)
3D Vector: \(\vec{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}\)
Cross Product: \(\vec{a} \times \vec{b} = \begin{pmatrix} y_1z_2 - z_1y_2 \\ z_1x_2 - x_1z_2 \\ x_1y_2 - y_1x_2 \end{pmatrix}\)
Line Equations: \(\vec{r} = \vec{a} + t\vec{d}\)
Plane Equations: \(\vec{r} \cdot \vec{n} = d\) or \(ax + by + cz = d\)
4. Statistics & Probability
Descriptive Statistics
Measures of Central Tendency
Mean: \(\bar{x} = \frac{\sum x_i}{n}\)
Median: Middle value when data is ordered
Mode: Most frequently occurring value
Weighted Mean: \(\bar{x} = \frac{\sum w_i x_i}{\sum w_i}\)
Measures of Spread
Range: Maximum - Minimum
Interquartile Range: \(IQR = Q_3 - Q_1\)
Variance: \(\sigma^2 = \frac{\sum (x_i - \mu)^2}{n}\) (population)
Standard Deviation: \(\sigma = \sqrt{\sigma^2}\)
Sample Variance: \(s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}\)
Coefficient of Variation: \(CV = \frac{\sigma}{\mu} \times 100\%\)
Probability Theory
Basic Probability Rules
Basic Properties: \(0 \leq P(A) \leq 1\), \(P(\Omega) = 1\)
Complement: \(P(A') = 1 - P(A)\)
Addition Rule: \(P(A \cup B) = P(A) + P(B) - P(A \cap B)\)
Multiplication Rule: \(P(A \cap B) = P(A) \times P(B|A)\)
Independence: \(P(A \cap B) = P(A) \times P(B)\)
Conditional Probability: \(P(A|B) = \frac{P(A \cap B)}{P(B)}\)
Bayes' Theorem: \(P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}\)
Problem: A medical test is 95% accurate for detecting a disease that affects 1% of the population. If positive, what's the probability of having the disease?
Solution:
Let D = has disease, T = positive test
Given: P(D) = 0.01, P(T|D) = 0.95, P(T|D') = 0.05
Find: P(D|T)
First, find P(T): \(P(T) = P(T|D)P(D) + P(T|D')P(D')\)
\(P(T) = 0.95 \times 0.01 + 0.05 \times 0.99 = 0.0095 + 0.0495 = 0.059\)
\(P(D|T) = \frac{P(T|D) \times P(D)}{P(T)} = \frac{0.95 \times 0.01}{0.059} ≈ 0.161\)
Answer: Only about 16.1% chance of having the disease!
Probability Distributions
Binomial Distribution
Conditions: Fixed n trials, constant probability p, independent trials
Probability Mass Function: \(P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}\)
Mean: \(E(X) = np\)
Variance: \(\text{Var}(X) = np(1-p)\)
Standard Deviation: \(\sigma = \sqrt{np(1-p)}\)
Normal Distribution
Notation: \(X \sim N(\mu, \sigma^2)\)
Standardization: \(Z = \frac{X - \mu}{\sigma}\) where \(Z \sim N(0,1)\)
Properties:
- 68% of data within 1 standard deviation
- 95% of data within 2 standard deviations
- 99.7% of data within 3 standard deviations
Inverse Normal: Find x given P(X < x) = p
5. Calculus
Limits & Continuity
Limit Definitions & Properties
Limit Definition: \(\lim_{x \to a} f(x) = L\)
Limit Laws:
\(\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)\)
\(\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)\)
\(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}\) (if denominator ≠ 0)
Continuity: f is continuous at a if \(\lim_{x \to a} f(x) = f(a)\)
L'Hôpital's Rule (HL)
Indeterminate Forms: \(\frac{0}{0}\), \(\frac{\infty}{\infty}\)
\(\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}\)
provided the right-hand limit exists
Differentiation
Basic Differentiation Rules
Definition: \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\)
Power Rule: \(\frac{d}{dx}[x^n] = nx^{n-1}\)
Product Rule: \((fg)' = f'g + fg'\)
Quotient Rule: \(\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}\)
Chain Rule: \(\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)\)
Exponential: \(\frac{d}{dx}[e^x] = e^x\), \(\frac{d}{dx}[a^x] = a^x \ln a\)
Logarithmic: \(\frac{d}{dx}[\ln x] = \frac{1}{x}\), \(\frac{d}{dx}[\log_a x] = \frac{1}{x \ln a}\)
Trigonometric Derivatives
\(\frac{d}{dx}[\sin x] = \cos x\)
\(\frac{d}{dx}[\cos x] = -\sin x\)
\(\frac{d}{dx}[\tan x] = \sec^2 x\)
\(\frac{d}{dx}[\sec x] = \sec x \tan x\)
\(\frac{d}{dx}[\csc x] = -\csc x \cot x\)
\(\frac{d}{dx}[\cot x] = -\csc^2 x\)
Problem: Find \(\frac{dy}{dx}\) if \(x^2 + y^2 = 25\)
Solution:
Differentiate both sides with respect to x:
\(\frac{d}{dx}[x^2 + y^2] = \frac{d}{dx}[25]\)
\(2x + 2y\frac{dy}{dx} = 0\)
\(2y\frac{dy}{dx} = -2x\)
\(\frac{dy}{dx} = -\frac{x}{y}\)
Applications of Differentiation
Optimization & Analysis
Critical Points: Where \(f'(x) = 0\) or \(f'(x)\) undefined
First Derivative Test:
- \(f'(x) > 0\): function increasing
- \(f'(x) < 0\): function decreasing
- Sign change at critical point indicates local extremum
Second Derivative Test:
- \(f''(x) > 0\): concave up
- \(f''(x) < 0\): concave down
- \(f''(c) = 0\): possible point of inflection
Optimization Steps:
- Define variables and constraints
- Express function to optimize
- Find critical points
- Test endpoints and critical points
Problem: A farmer has 100m of fencing to make a rectangular pen against a wall. What dimensions maximize area?
Solution:
Let width = x, length = y. Only 3 sides need fencing.
Constraint: \(2x + y = 100\), so \(y = 100 - 2x\)
Area: \(A = xy = x(100 - 2x) = 100x - 2x^2\)
\(A'(x) = 100 - 4x\)
Critical point: \(100 - 4x = 0\), so \(x = 25\)
\(A''(x) = -4 < 0\), so this is a maximum
When \(x = 25\): \(y = 100 - 2(25) = 50\)
Answer: Width = 25m, Length = 50m, Max Area = 1250m²
Integration
Basic Integration Rules
Fundamental Theorem: \(\int_a^b f(x)dx = F(b) - F(a)\) where \(F'(x) = f(x)\)
Power Rule: \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\) (n ≠ -1)
Exponential: \(\int e^x dx = e^x + C\)
Logarithmic: \(\int \frac{1}{x} dx = \ln|x| + C\)
Trigonometric:
\(\int \sin x dx = -\cos x + C\)
\(\int \cos x dx = \sin x + C\)
\(\int \sec^2 x dx = \tan x + C\)
Advanced Integration Techniques (HL)
Integration by Parts: \(\int u dv = uv - \int v du\)
Substitution: \(\int f(g(x))g'(x)dx = \int f(u)du\) where \(u = g(x)\)
Partial Fractions: Decompose rational functions
Applications of Integration
Area between curves: \(A = \int_a^b |f(x) - g(x)| dx\)
Volume of revolution (disk method): \(V = \pi \int_a^b [f(x)]^2 dx\)
Volume of revolution (shell method): \(V = 2\pi \int_a^b x f(x) dx\)
Arc length: \(L = \int_a^b \sqrt{1 + [f'(x)]^2} dx\)
Differential Equations (HL)
First-Order Separable Equations
Form: \(\frac{dy}{dx} = f(x)g(y)\)
Method: Separate variables: \(\frac{dy}{g(y)} = f(x)dx\)
Integrate both sides: \(\int \frac{dy}{g(y)} = \int f(x)dx\)
Exponential Growth/Decay: \(\frac{dy}{dt} = ky \Rightarrow y = y_0 e^{kt}\)
6. Technology & Exam Strategy
Calculator Usage
Statistical Functions
Data Entry: Use Lists or Statistics mode
1-Var Stats: Mean, median, standard deviation, quartiles
2-Var Stats: Correlation coefficient, regression
Probability: Binomial, normal distributions
Inverse Normal: Find x-values from probabilities
Graphing & Solving
Function Graphing: Y= editor, window settings
Intersection Points: Use intersect feature
Root Finding: Zero/root finder
Integration: Numerical integration feature
Derivatives: Numerical derivative at a point
Exam Techniques
Time Management
Paper 1 (SL: 90 min, HL: 120 min): No calculator
Paper 2 (SL: 90 min, HL: 120 min): Calculator allowed
Strategy:
- Read all questions first
- Start with easier questions
- Show all working clearly
- Check answers when possible
- Use appropriate precision (3 significant figures)
Common Mistakes to Avoid
- Not showing sufficient working
- Rounding too early in calculations
- Forgetting domain restrictions
- Not checking reasonableness of answers
- Misreading question requirements
- Not using appropriate units
- Arithmetic errors in basic calculations