Basic Math

Exponential functions | Eleventh Grade

Exponential Functions

📌 What is an Exponential Function?

An exponential function is a function where the variable appears in the exponent:

\( f(x) = ab^x \)

Where:

  • \( a \) = initial value (y-intercept when \( x = 0 \))
  • \( b \) = base (growth/decay factor), \( b > 0, b \neq 1 \)
  • \( x \) = exponent (independent variable)

Domain and Range of Exponential Functions

General Form: \( f(x) = ab^x + k \)

Domain:

All real numbers: \( (-\infty, \infty) \)

Exponential functions are defined for all values of \( x \)

Range:

If \( a > 0 \): \( y > k \) or \( (k, \infty) \)
If \( a < 0 \): \( y < k \) or \( (-\infty, k) \)

The range depends on the horizontal asymptote \( y = k \)

📝 Examples - Domain and Range:

Example 1: \( f(x) = 2^x \)

Domain: \( (-\infty, \infty) \)
Range: \( (0, \infty) \) or \( y > 0 \)
Asymptote: \( y = 0 \)

Example 2: \( f(x) = 3 \cdot 2^x - 5 \)

Domain: \( (-\infty, \infty) \)
Range: \( (-5, \infty) \) or \( y > -5 \)
Asymptote: \( y = -5 \)

Evaluating Exponential Functions

How to Evaluate:

  1. Substitute the given value for \( x \)
  2. Calculate the power (base raised to the exponent)
  3. Multiply by the coefficient if present
  4. Add/subtract any constant term

📝 Examples - Evaluating:

Example 1: Evaluate \( f(x) = 2^x \) when \( x = 3 \)

\( f(3) = 2^3 = 8 \)

Example 2: Evaluate \( f(x) = 5 \cdot 3^x \) when \( x = 2 \)

\( f(2) = 5 \cdot 3^2 = 5 \cdot 9 = 45 \)

Example 3: Evaluate \( f(x) = 100 \cdot (0.5)^x \) when \( x = 4 \)

\( f(4) = 100 \cdot (0.5)^4 = 100 \cdot 0.0625 = 6.25 \)

Example 4: Evaluate \( f(x) = 2 \cdot 3^x + 1 \) when \( x = 0 \)

\( f(0) = 2 \cdot 3^0 + 1 = 2 \cdot 1 + 1 = 3 \)

Exponential Growth and Decay

Exponential Growth: \( b > 1 \)

\( f(x) = a(1 + r)^x \) or \( f(x) = ab^x \) where \( b > 1 \)

  • \( a \) = initial amount
  • \( r \) = growth rate (as a decimal)
  • \( x \) or \( t \) = time
  • Growth factor: \( b = 1 + r \)
  • Function increases as \( x \) increases

Exponential Decay: \( 0 < b < 1 \)

\( f(x) = a(1 - r)^x \) or \( f(x) = ab^x \) where \( 0 < b < 1 \)

  • \( a \) = initial amount
  • \( r \) = decay rate (as a decimal)
  • \( x \) or \( t \) = time
  • Decay factor: \( b = 1 - r \)
  • Function decreases as \( x \) increases

📝 Example - Growth:

A population of 500 bacteria doubles every hour. Write the exponential function and find the population after 3 hours.

Step 1: Identify values

Initial amount: \( a = 500 \)
Doubles means: \( b = 2 \) (growth factor)

Step 2: Write function

\( P(t) = 500 \cdot 2^t \)

Step 3: Find population after 3 hours

\( P(3) = 500 \cdot 2^3 = 500 \cdot 8 = 4000 \) bacteria

📝 Example - Decay:

A car worth $30,000 depreciates at 15% per year. Write the function and find its value after 5 years.

Step 1: Identify values

Initial value: \( a = 30000 \)
Decay rate: \( r = 0.15 \)
Decay factor: \( b = 1 - 0.15 = 0.85 \)

Step 2: Write function

\( V(t) = 30000(0.85)^t \)

Step 3: Find value after 5 years

\( V(5) = 30000(0.85)^5 \approx 30000(0.4437) \approx $13,311 \)

Graphing Exponential Functions

Key Features of Exponential Graphs:

For \( f(x) = ab^x + k \):

  • Y-intercept: \( (0, a + k) \) — substitute \( x = 0 \)
  • Horizontal asymptote: \( y = k \)
  • Domain: All real numbers
  • If \( b > 1 \): Growth (increases left to right)
  • If \( 0 < b < 1 \): Decay (decreases left to right)
  • Graph never touches the asymptote
  • Always positive if \( a > 0 \) and above asymptote

Steps to Graph:

  1. Identify the horizontal asymptote \( y = k \)
  2. Find the y-intercept by substituting \( x = 0 \)
  3. Calculate 2-3 more points by choosing convenient \( x \) values
  4. Determine if it's growth (\( b > 1 \)) or decay (\( 0 < b < 1 \))
  5. Draw the asymptote, plot points, and sketch the curve

📝 Example - Graphing:

Graph \( f(x) = 2 \cdot 3^x - 1 \)

Step 1: Horizontal asymptote

\( y = -1 \)

Step 2: Y-intercept

\( f(0) = 2 \cdot 3^0 - 1 = 2 \cdot 1 - 1 = 1 \) → Point: \( (0, 1) \)

Step 3: Additional points

\( f(1) = 2 \cdot 3^1 - 1 = 6 - 1 = 5 \) → \( (1, 5) \)
\( f(-1) = 2 \cdot 3^{-1} - 1 = \frac{2}{3} - 1 = -\frac{1}{3} \) → \( (-1, -\frac{1}{3}) \)

Step 4: Type

Since \( b = 3 > 1 \), this is exponential growth

Step 5: Draw asymptote at \( y = -1 \), plot points, and sketch increasing curve

Transformations of Exponential Functions

Standard Form:

\( f(x) = a \cdot b^{x-h} + k \)

  • \( a \): Vertical stretch/compression and reflection
  • \( h \): Horizontal shift (right if \( h > 0 \), left if \( h < 0 \))
  • \( k \): Vertical shift (up if \( k > 0 \), down if \( k < 0 \))
  • Horizontal asymptote moves to \( y = k \)

Identifying Linear vs. Exponential Functions

From a Table of Values:

Linear Function:

  • Constant difference in \( y \)-values for equal \( x \) intervals
  • Form: \( y = mx + b \)

Exponential Function:

  • Constant ratio in \( y \)-values for equal \( x \) intervals
  • Form: \( y = ab^x \)

📝 Example - Identify from Table:

\( x \)0123
\( y \)361224

Check differences: \( 6-3=3, 12-6=6, 24-12=12 \) → Not constant (not linear)
Check ratios: \( \frac{6}{3}=2, \frac{12}{6}=2, \frac{24}{12}=2 \) → Constant!
Answer: Exponential with \( a = 3, b = 2 \) → \( y = 3 \cdot 2^x \)

Exponential Functions Over Unit Intervals

Key Concept:

For exponential functions, consecutive integer values of \( x \) (unit intervals) produce \( y \)-values with a constant ratio.

\( \frac{f(x+1)}{f(x)} = b \) (constant for all \( x \))

This ratio equals the base \( b \) of the exponential function.

Word Problems with Exponential Functions

Common Formulas:

1. Compound Interest:

\( A = P(1 + r)^t \)

\( P \) = principal, \( r \) = rate, \( t \) = time, \( A \) = amount

2. Population Growth:

\( P(t) = P_0(1 + r)^t \)

3. Radioactive Decay:

\( N(t) = N_0 \left(\frac{1}{2}\right)^{t/h} \)

\( h \) = half-life

4. General Growth/Decay:

\( y = a(1 \pm r)^t \)

Use + for growth, − for decay

📝 Example - Compound Interest:

You invest $5,000 at 6% annual interest compounded yearly. How much will you have after 10 years?

Given:

\( P = 5000 \)
\( r = 0.06 \)
\( t = 10 \)

Formula:

\( A = 5000(1.06)^{10} \)

Calculate:

\( A = 5000(1.790847) \approx $8,954.24 \)

📝 Example - Population Growth:

A town's population is 20,000 and grows at 3% per year. Write the function and find the population after 15 years.

Write function:

\( P(t) = 20000(1.03)^t \)

After 15 years:

\( P(15) = 20000(1.03)^{15} \approx 20000(1.558) \approx 31,160 \) people

⚡ Quick Summary

PropertyExponential Function
General Form\( f(x) = ab^x + k \)
DomainAll real numbers
Range\( y > k \) (if \( a > 0 \))
Asymptote\( y = k \)
Growth\( b > 1 \)
Decay\( 0 < b < 1 \)
  • Exponential functions have variable in the exponent
  • Growth: \( y = a(1+r)^t \), Decay: \( y = a(1-r)^t \)
  • Linear has constant differences; exponential has constant ratios
  • Y-intercept at \( (0, a+k) \); horizontal asymptote at \( y = k \)
  • Graph increases (growth) or decreases (decay) rapidly
Shares: