Basic Math

Complex numbers | Eleventh Grade

Complex Numbers

Complete Notes & Formulae for Eleventh Grade (Algebra 2)

1. Introduction to Complex Numbers

The Imaginary Unit (i):

\[ i = \sqrt{-1} \]

\[ i^2 = -1 \]

The imaginary unit i is defined as the square root of -1. This allows us to work with square roots of negative numbers.

Standard Form of a Complex Number:

\[ z = a + bi \]

where:

a = real part (Re(z))

b = imaginary part (Im(z))

i = imaginary unit

Both a and b are real numbers

Examples:

Example 1: \( 3 + 4i \)

Real part = 3, Imaginary part = 4

Example 2: \( -2 - 5i \)

Real part = -2, Imaginary part = -5

Example 3: \( 7 \) (purely real)

Real part = 7, Imaginary part = 0 → \( 7 + 0i \)

Example 4: \( 6i \) (purely imaginary)

Real part = 0, Imaginary part = 6 → \( 0 + 6i \)

Simplifying Square Roots of Negative Numbers:

Formula:

\[ \sqrt{-n} = i\sqrt{n} \quad \text{where } n > 0 \]

Examples:

• \( \sqrt{-16} = \sqrt{16} \cdot \sqrt{-1} = 4i \)

• \( \sqrt{-25} = \sqrt{25} \cdot i = 5i \)

• \( \sqrt{-7} = i\sqrt{7} \)

2. Add and Subtract Complex Numbers

Addition Formula:

\[ (a + bi) + (c + di) = (a + c) + (b + d)i \]

Rule: Add the real parts together, add the imaginary parts together

Subtraction Formula:

\[ (a + bi) - (c + di) = (a - c) + (b - d)i \]

Rule: Subtract the real parts, subtract the imaginary parts

Examples:

Example 1: Addition

\( (5 + 3i) + (2 + 7i) \)

Step 1: Add real parts: \( 5 + 2 = 7 \)

Step 2: Add imaginary parts: \( 3i + 7i = 10i \)

Answer: \( 7 + 10i \)

Example 2: Subtraction

\( (8 - 4i) - (3 + 6i) \)

Step 1: Subtract real parts: \( 8 - 3 = 5 \)

Step 2: Subtract imaginary parts: \( -4i - 6i = -10i \)

Answer: \( 5 - 10i \)

Example 3: Mixed Operations

\( (6 + 2i) - (4 - 3i) + (1 + i) \)

Step 1: Distribute negative: \( 6 + 2i - 4 + 3i + 1 + i \)

Step 2: Combine real: \( 6 - 4 + 1 = 3 \)

Step 3: Combine imaginary: \( 2i + 3i + i = 6i \)

Answer: \( 3 + 6i \)

3. Complex Conjugates

Definition:

The complex conjugate of a complex number is obtained by changing the sign of the imaginary part.

\[ \text{If } z = a + bi, \text{ then } \overline{z} = a - bi \]

Notation: \( \overline{z} \) or \( z^* \)

Examples:

• \( z = 3 + 4i \) → \( \overline{z} = 3 - 4i \)

• \( z = -5 - 2i \) → \( \overline{z} = -5 + 2i \)

• \( z = 7 \) → \( \overline{z} = 7 \) (real number's conjugate is itself)

• \( z = 6i \) → \( \overline{z} = -6i \)

Important Property:

Product of Complex Conjugates:

\[ (a + bi)(a - bi) = a^2 + b^2 \]

The product is ALWAYS a real number!

Example:

\( (3 + 4i)(3 - 4i) = 3^2 - (4i)^2 = 9 - 16i^2 = 9 - 16(-1) = 9 + 16 = 25 \)

4. Multiply Complex Numbers

Multiplication Formula (FOIL Method):

\[ (a + bi)(c + di) = (ac - bd) + (ad + bc)i \]

Steps:

1. First: \( a \times c = ac \)

2. Outer: \( a \times di = adi \)

3. Inner: \( bi \times c = bci \)

4. Last: \( bi \times di = bdi^2 = -bd \)

5. Combine: \( ac + adi + bci - bd = (ac - bd) + (ad + bc)i \)

⚠️ Remember: \( i^2 = -1 \)

Detailed Examples:

Example 1:

\( (3 + 2i)(4 + 5i) \)

F: \( 3 \times 4 = 12 \)

O: \( 3 \times 5i = 15i \)

I: \( 2i \times 4 = 8i \)

L: \( 2i \times 5i = 10i^2 = 10(-1) = -10 \)

Combine: \( 12 + 15i + 8i - 10 = 2 + 23i \)

Answer: \( 2 + 23i \)

Example 2:

\( (2 - 3i)(1 + 4i) \)

F: \( 2 \times 1 = 2 \)

O: \( 2 \times 4i = 8i \)

I: \( -3i \times 1 = -3i \)

L: \( -3i \times 4i = -12i^2 = -12(-1) = 12 \)

Combine: \( 2 + 8i - 3i + 12 = 14 + 5i \)

Answer: \( 14 + 5i \)

5. Divide Complex Numbers

Division Method:

To divide complex numbers, multiply both numerator and denominator by the complex conjugate of the denominator.

\[ \frac{a + bi}{c + di} = \frac{a + bi}{c + di} \cdot \frac{c - di}{c - di} = \frac{(a + bi)(c - di)}{c^2 + d^2} \]

Step-by-Step Process:

Step 1: Identify the complex conjugate of the denominator

If denominator is \( c + di \), conjugate is \( c - di \)

Step 2: Multiply numerator and denominator by the conjugate

Step 3: Multiply out the numerator using FOIL

Step 4: Simplify the denominator (will be a real number)

Use formula: \( (c + di)(c - di) = c^2 + d^2 \)

Step 5: Write in standard form \( a + bi \)

Detailed Example:

Divide: \( \frac{3 + 2i}{1 - 4i} \)

Step 1: Complex conjugate of \( 1 - 4i \) is \( 1 + 4i \)

Step 2: Multiply:

\( \frac{3 + 2i}{1 - 4i} \cdot \frac{1 + 4i}{1 + 4i} \)

Step 3: Numerator (FOIL):

\( (3 + 2i)(1 + 4i) = 3 + 12i + 2i + 8i^2 \)

\( = 3 + 14i + 8(-1) = 3 + 14i - 8 = -5 + 14i \)

Step 4: Denominator:

\( (1 - 4i)(1 + 4i) = 1^2 + 4^2 = 1 + 16 = 17 \)

Step 5: Final answer:

\( \frac{-5 + 14i}{17} = -\frac{5}{17} + \frac{14}{17}i \)

Answer: \( -\frac{5}{17} + \frac{14}{17}i \)

6. Absolute Values of Complex Numbers (Modulus)

Definition:

The absolute value (or modulus) of a complex number is its distance from the origin in the complex plane.

\[ |a + bi| = \sqrt{a^2 + b^2} \]

Notation: \( |z| \) or \( r \) (radius)

The result is ALWAYS a non-negative real number

Examples:

Example 1:

Find \( |3 + 4i| \)

\( |3 + 4i| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \)

Answer: 5

Example 2:

Find \( |-5 + 12i| \)

\( |-5 + 12i| = \sqrt{(-5)^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \)

Answer: 13

Example 3:

Find \( |6i| \)

\( |0 + 6i| = \sqrt{0^2 + 6^2} = \sqrt{36} = 6 \)

Answer: 6

Important Properties:

• \( |z| \geq 0 \) (always non-negative)

• \( |z| = 0 \) if and only if \( z = 0 \)

• \( |z \cdot w| = |z| \cdot |w| \)

• \( \left|\frac{z}{w}\right| = \frac{|z|}{|w|} \) (when \( w \neq 0 \))

• \( |z| = |\overline{z}| \) (complex number and its conjugate have same modulus)

7. Powers of i

The Repeating Pattern:

Powers of i follow a cyclical pattern that repeats every 4 powers:

PowerValueCalculation
\( i^0 \)1Any number to power 0 equals 1
\( i^1 \)\( i \)By definition
\( i^2 \)-1By definition
\( i^3 \)\( -i \)\( i^2 \cdot i = -1 \cdot i = -i \)
\( i^4 \)1\( i^2 \cdot i^2 = (-1)(-1) = 1 \)
\( i^5 \)\( i \)\( i^4 \cdot i = 1 \cdot i = i \)
\( i^6 \)-1\( i^4 \cdot i^2 = 1 \cdot (-1) = -1 \)
\( i^7 \)\( -i \)\( i^4 \cdot i^3 = 1 \cdot (-i) = -i \)
\( i^8 \)1\( i^4 \cdot i^4 = 1 \cdot 1 = 1 \)

Cycle Pattern:

\( 1, \; i, \; -1, \; -i, \; 1, \; i, \; -1, \; -i, \; ... \)

Quick Method to Find Any Power of i:

Formula:

Divide the exponent by 4 and find the remainder:

Remainder when n ÷ 4\( i^n = \)
01
1\( i \)
2-1
3\( -i \)

Examples:

Example 1: Find \( i^{23} \)

23 ÷ 4 = 5 remainder 3

Remainder = 3 → \( i^{23} = i^3 = -i \)

Answer: \( -i \)

Example 2: Find \( i^{100} \)

100 ÷ 4 = 25 remainder 0

Remainder = 0 → \( i^{100} = i^0 = 1 \)

Answer: 1

Example 3: Find \( i^{46} \)

46 ÷ 4 = 11 remainder 2

Remainder = 2 → \( i^{46} = i^2 = -1 \)

Answer: -1

8. Quick Reference Summary

Key Formulas:

\( i = \sqrt{-1}, \quad i^2 = -1 \)

Standard Form: \( z = a + bi \)

Addition: \( (a + bi) + (c + di) = (a + c) + (b + d)i \)

Subtraction: \( (a + bi) - (c + di) = (a - c) + (b - d)i \)

Multiplication: \( (a + bi)(c + di) = (ac - bd) + (ad + bc)i \)

Complex Conjugate: \( \overline{a + bi} = a - bi \)

Conjugate Product: \( (a + bi)(a - bi) = a^2 + b^2 \)

Absolute Value: \( |a + bi| = \sqrt{a^2 + b^2} \)

Division: \( \frac{a + bi}{c + di} = \frac{a + bi}{c + di} \cdot \frac{c - di}{c - di} \)

Powers of i: Divide exponent by 4, use remainder

Remainder 0 → 1, Remainder 1 → i, Remainder 2 → -1, Remainder 3 → -i

📚 Study Tips

✓ Always remember \( i^2 = -1 \) when multiplying

✓ Combine like terms (real with real, imaginary with imaginary)

✓ To divide, multiply by conjugate of denominator

✓ Use remainder method for powers of i (divide exponent by 4)

✓ Practice FOIL method for multiplication

Shares: