Basic Math

Limits | Twelfth Grade

Limits

Complete Notes & Formulae for Twelfth Grade (Precalculus)

1. What is a Limit?

Definition:

A limit describes the value that a function approaches as the input approaches a certain point

\[ \lim_{x \to a} f(x) = L \]

Read as: "The limit of f(x) as x approaches a equals L"

• x approaches a but never necessarily equals a

• The function doesn't need to be defined at x = a

• We care about values near a, not at a

2. One-Sided Limits

Left-Hand Limit:

Approaches from the left (values less than a)

\[ \lim_{x \to a^-} f(x) = L \]

Right-Hand Limit:

Approaches from the right (values greater than a)

\[ \lim_{x \to a^+} f(x) = L \]

Key Rule:

A two-sided limit exists if and only if both one-sided limits exist and are equal:

\[ \lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L \]

3. When Does a Limit Exist?

Limit Exists When:

✓ Left-hand limit = Right-hand limit

✓ Both one-sided limits are finite numbers

✓ Function approaches the same value from both sides

Limit Does NOT Exist When:

✗ Left-hand limit ≠ Right-hand limit

✗ Function approaches ∞ or -∞

✗ Function oscillates without settling to a value

4. Limits at Vertical Asymptotes

Definition:

At a vertical asymptote x = a, the function approaches infinity or negative infinity

Possible Cases:

• \( \lim_{x \to a^-} f(x) = +\infty \) and \( \lim_{x \to a^+} f(x) = +\infty \)

• \( \lim_{x \to a^-} f(x) = -\infty \) and \( \lim_{x \to a^+} f(x) = -\infty \)

• \( \lim_{x \to a^-} f(x) = +\infty \) and \( \lim_{x \to a^+} f(x) = -\infty \) (or vice versa)

Example:

For \( f(x) = \frac{1}{x} \) at x = 0:

\( \lim_{x \to 0^-} \frac{1}{x} = -\infty \)

\( \lim_{x \to 0^+} \frac{1}{x} = +\infty \)

x = 0 is a vertical asymptote

5. End Behavior (Limits at Infinity)

Definition:

End behavior describes what happens to f(x) as x approaches positive or negative infinity

\[ \lim_{x \to \infty} f(x) \quad \text{and} \quad \lim_{x \to -\infty} f(x) \]

Key Rules:

• \( \lim_{x \to \infty} \frac{c}{x^n} = 0 \) for any positive integer n

• Horizontal asymptote at y = L if limit equals L

• For rational functions, compare degrees of numerator and denominator

6. Limit Laws

Basic Laws:

If \( \lim_{x \to a} f(x) = L \) and \( \lim_{x \to a} g(x) = M \), then:

1. Sum Law:

\[ \lim_{x \to a} [f(x) + g(x)] = L + M \]

2. Difference Law:

\[ \lim_{x \to a} [f(x) - g(x)] = L - M \]

3. Constant Multiple Law:

\[ \lim_{x \to a} [c \cdot f(x)] = c \cdot L \]

4. Product Law:

\[ \lim_{x \to a} [f(x) \cdot g(x)] = L \cdot M \]

7. Division, Power, and Root Laws

Quotient Law:

\[ \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \quad \text{(if } M \neq 0 \text{)} \]

Power Law:

\[ \lim_{x \to a} [f(x)]^n = L^n \]

Root Law:

\[ \lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L} \]

(For all L if n is odd; for L ≥ 0 if n is even)

8. Limits of Polynomials and Rational Functions

For Polynomials:

Simply substitute x = a:

\[ \lim_{x \to a} p(x) = p(a) \]

Example:

\( \lim_{x \to 2} (x^2 + 3x - 1) = 2^2 + 3(2) - 1 = 9 \)

For Rational Functions:

If denominator ≠ 0 at x = a, substitute directly:

\[ \lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)} \quad \text{(if } q(a) \neq 0 \text{)} \]

⚠️ If you get \( \frac{0}{0} \) (indeterminate form), use factorization or rationalization!

9. Limits by Factorization

Method:

When substitution gives \( \frac{0}{0} \):

1. Factor numerator and denominator

2. Cancel common factors

3. Substitute x = a into simplified expression

Example:

Find: \( \lim_{x \to 2} \frac{x^2 - 4}{x - 2} \)

Direct substitution: \( \frac{0}{0} \) (indeterminate)

Factor: \( \frac{(x-2)(x+2)}{x-2} \)

Cancel: \( x + 2 \) (for x ≠ 2)

Substitute: \( 2 + 2 = 4 \)

Answer: 4

10. Limits by Rationalization

Method:

When expression involves square roots and gives \( \frac{0}{0} \):

1. Multiply by conjugate of numerator or denominator

2. Use difference of squares: \( (a-b)(a+b) = a^2 - b^2 \)

3. Simplify and cancel common factors

4. Substitute x = a

Example:

Find: \( \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} \)

Multiply by conjugate: \( \frac{\sqrt{x+1} - 1}{x} \cdot \frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1} \)

= \( \frac{(x+1) - 1}{x(\sqrt{x+1} + 1)} = \frac{x}{x(\sqrt{x+1} + 1)} \)

Cancel x: \( \frac{1}{\sqrt{x+1} + 1} \)

Substitute x = 0: \( \frac{1}{\sqrt{1} + 1} = \frac{1}{2} \)

Answer: \( \frac{1}{2} \)

11. Important Special Limits

1. Constant Function:

\[ \lim_{x \to a} c = c \]

2. Identity Function:

\[ \lim_{x \to a} x = a \]

3. Limit of Reciprocals:

\[ \lim_{x \to 0^+} \frac{1}{x} = +\infty, \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty \]

12. Quick Reference Summary

Key Strategies:

1. Try direct substitution first

2. If you get \( \frac{0}{0} \), factor or rationalize

3. If you get \( \frac{k}{0} \) (k ≠ 0), limit is ±∞

4. Check one-sided limits if limit doesn't exist

5. For limits at ∞, compare degrees of polynomials

📚 Study Tips

✓ Limit exists when left and right limits are equal and finite

✓ Always try direct substitution first before other methods

✓ Indeterminate form \( \frac{0}{0} \) requires algebraic simplification

✓ Use conjugates when dealing with square roots

✓ Limit laws only work when individual limits exist

Shares: