Basic Math

Polar form | Twelfth Grade

Polar Form of Complex Numbers

Complete Notes & Formulae for Twelfth Grade (Precalculus)

1. Modulus of a Complex Number

Definition:

The modulus (or absolute value) of a complex number is the distance from the origin to the point in the complex plane

For \( z = x + yi \):

\[ |z| = r = \sqrt{x^2 + y^2} \]

Properties:

• The modulus is always non-negative: \( r \geq 0 \)

• \( r = 0 \) if and only if \( z = 0 \)

• Also written as \( |z| \) or \( \text{mod}(z) \)

Examples:

Find modulus of \( z = 3 + 4i \)

\( |z| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \)

Find modulus of \( z = -5 + 12i \)

\( |z| = \sqrt{(-5)^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \)

2. Argument of a Complex Number

Definition:

The argument is the angle \( \theta \) (measured in radians) that the line from the origin to the point makes with the positive real axis

For \( z = x + yi \):

\[ \theta = \arg(z) = \tan^{-1}\left(\frac{y}{x}\right) \]

⚠️ Must consider the quadrant when finding the angle!

Finding Argument by Quadrant:

QuadrantConditionArgument Formula
I\( x > 0, y > 0 \)\( \theta = \tan^{-1}\left(\frac{y}{x}\right) \)
II\( x < 0, y > 0 \)\( \theta = \pi + \tan^{-1}\left(\frac{y}{x}\right) \)
III\( x < 0, y < 0 \)\( \theta = \pi + \tan^{-1}\left(\frac{y}{x}\right) \)
IV\( x > 0, y < 0 \)\( \theta = \tan^{-1}\left(\frac{y}{x}\right) \) or \( 2\pi + \tan^{-1}\left(\frac{y}{x}\right) \)

Principal Argument:

The principal argument is the unique value of \( \theta \) in the range:

\[ -\pi < \theta \leq \pi \quad \text{or} \quad -180° < \theta \leq 180° \]

3. Polar Form of Complex Numbers

Definition:

The polar form represents a complex number using its modulus and argument

\[ z = r(\cos\theta + i\sin\theta) \]

\[ \text{or} \quad z = r \text{ cis } \theta \]

\[ \text{or} \quad z = r\angle\theta \]

where:

• \( r = |z| = \sqrt{x^2 + y^2} \) (modulus)

• \( \theta = \arg(z) \) (argument)

4. Convert Rectangular to Polar Form

Conversion Formulas:

Given: \( z = x + yi \) (rectangular form)

Find: \( z = r(\cos\theta + i\sin\theta) \) (polar form)

\[ r = \sqrt{x^2 + y^2} \] \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \text{ (adjust for quadrant)} \]

Steps:

1. Calculate the modulus: \( r = \sqrt{x^2 + y^2} \)

2. Find the reference angle: \( \alpha = \tan^{-1}\left(\frac{|y|}{|x|}\right) \)

3. Determine the argument \( \theta \) based on the quadrant

4. Write in polar form: \( z = r(\cos\theta + i\sin\theta) \)

Examples:

Convert \( z = 1 + i \) to polar form

Modulus: \( r = \sqrt{1^2 + 1^2} = \sqrt{2} \)

Argument: \( \theta = \tan^{-1}\left(\frac{1}{1}\right) = \tan^{-1}(1) = \frac{\pi}{4} \)

Point (1, 1) is in Quadrant I

Polar form: \( z = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \)

Convert \( z = -\sqrt{3} + i \) to polar form

Modulus: \( r = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = 2 \)

Reference angle: \( \alpha = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \)

Point \( (-\sqrt{3}, 1) \) is in Quadrant II

Argument: \( \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \)

Polar form: \( z = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) \)

Convert \( z = 3 - 3i \) to polar form

Modulus: \( r = \sqrt{3^2 + (-3)^2} = \sqrt{18} = 3\sqrt{2} \)

Reference angle: \( \alpha = \tan^{-1}\left(\frac{3}{3}\right) = \frac{\pi}{4} \)

Point (3, -3) is in Quadrant IV

Argument: \( \theta = -\frac{\pi}{4} \) or \( \frac{7\pi}{4} \)

Polar form: \( z = 3\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right) \)

5. Convert Polar to Rectangular Form

Conversion Formulas:

Given: \( z = r(\cos\theta + i\sin\theta) \) (polar form)

Find: \( z = x + yi \) (rectangular form)

\[ x = r\cos\theta \] \[ y = r\sin\theta \]

Steps:

1. Evaluate \( \cos\theta \) and \( \sin\theta \)

2. Multiply by \( r \): \( x = r\cos\theta \) and \( y = r\sin\theta \)

3. Write in rectangular form: \( z = x + yi \)

Examples:

Convert \( z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \) to rectangular form

Evaluate: \( \cos\frac{\pi}{3} = \frac{1}{2} \) and \( \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} \)

Calculate: \( x = 2 \cdot \frac{1}{2} = 1 \)

Calculate: \( y = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \)

Rectangular form: \( z = 1 + \sqrt{3}i \)

Convert \( z = 4\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) \) to rectangular form

Evaluate: \( \cos\frac{3\pi}{4} = -\frac{\sqrt{2}}{2} \) and \( \sin\frac{3\pi}{4} = \frac{\sqrt{2}}{2} \)

Calculate: \( x = 4 \cdot \left(-\frac{\sqrt{2}}{2}\right) = -2\sqrt{2} \)

Calculate: \( y = 4 \cdot \frac{\sqrt{2}}{2} = 2\sqrt{2} \)

Rectangular form: \( z = -2\sqrt{2} + 2\sqrt{2}i \)

Convert \( z = 6\left(\cos\pi + i\sin\pi\right) \) to rectangular form

Evaluate: \( \cos\pi = -1 \) and \( \sin\pi = 0 \)

Calculate: \( x = 6(-1) = -6 \)

Calculate: \( y = 6(0) = 0 \)

Rectangular form: \( z = -6 \) (pure real number)

6. Quick Conversion Reference

FromToFormulas
Rectangular \( z = x + yi \)Polar \( z = r(\cos\theta + i\sin\theta) \)\( r = \sqrt{x^2 + y^2} \)
\( \theta = \tan^{-1}(y/x) \)
Polar \( z = r(\cos\theta + i\sin\theta) \)Rectangular \( z = x + yi \)\( x = r\cos\theta \)
\( y = r\sin\theta \)

7. Special Cases

Common Complex Numbers in Polar Form:

RectangularPolar Form
\( 1 \)\( 1(\cos 0 + i\sin 0) \)
\( i \)\( 1(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) \)
\( -1 \)\( 1(\cos\pi + i\sin\pi) \)
\( -i \)\( 1(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}) \)

8. Quick Reference Summary

Essential Formulas:

Modulus: \( r = |z| = \sqrt{x^2 + y^2} \)

Argument: \( \theta = \arg(z) = \tan^{-1}(y/x) \) (adjust for quadrant)

Polar Form: \( z = r(\cos\theta + i\sin\theta) = r \text{ cis } \theta \)

Rectangular to Polar: \( r = \sqrt{x^2+y^2}, \theta = \tan^{-1}(y/x) \)

Polar to Rectangular: \( x = r\cos\theta, y = r\sin\theta \)

📚 Study Tips

✓ Always check the quadrant when finding the argument

✓ Modulus is always non-negative (like distance)

✓ Principal argument range: -π < θ ≤ π

✓ Polar form makes multiplication and division easier

✓ Draw a diagram to visualize the complex number's position

Shares: