Matrices
Complete Notes & Formulae for Twelfth Grade (Precalculus)
1. Matrix Vocabulary
Definition:
A matrix is a rectangular array of numbers arranged in rows and columns
\[ A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \]
Key Terms:
• Order/Dimension: \( m \times n \) (m rows by n columns)
• Element: \( a_{ij} \) is the element in row i, column j
• Square Matrix: Same number of rows and columns (n × n)
• Row Matrix: Matrix with only one row (1 × n)
• Column Matrix: Matrix with only one column (m × 1)
• Zero Matrix: All elements are zero
• Identity Matrix (I): Square matrix with 1's on diagonal, 0's elsewhere
2. Matrix Operation Rules
Compatibility for Operations:
• Addition/Subtraction: Matrices must have the SAME dimensions
• Scalar Multiplication: Can multiply any matrix by a scalar
• Matrix Multiplication: Number of columns in first = number of rows in second
Properties Summary:
| Property | Formula |
|---|---|
| Commutative (Addition) | \( A + B = B + A \) |
| Associative (Addition) | \( (A + B) + C = A + (B + C) \) |
| Associative (Multiplication) | \( (AB)C = A(BC) \) |
| Distributive | \( A(B + C) = AB + AC \) |
| NOT Commutative (Mult) | \( AB \neq BA \) (in general) |
3. Add and Subtract Matrices
Rule:
Add or subtract corresponding elements (element-by-element)
\[ A \pm B = \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} \end{bmatrix} \]
⚠️ Both matrices MUST have the same dimensions
Example:
Calculate: \( \begin{bmatrix} 3 & 5 \\ 1 & -2 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 4 & 6 \end{bmatrix} \)
Add corresponding elements:
\[ = \begin{bmatrix} 3+2 & 5+(-1) \\ 1+4 & -2+6 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 5 & 4 \end{bmatrix} \]
4. Multiply a Matrix by a Scalar
Rule:
Multiply every element by the scalar
\[ kA = k\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} ka_{11} & ka_{12} \\ ka_{21} & ka_{22} \end{bmatrix} \]
Example:
Calculate: \( 3\begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix} \)
\[ = \begin{bmatrix} 3(2) & 3(-1) \\ 3(0) & 3(4) \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 0 & 12 \end{bmatrix} \]
5. Multiply Two Matrices
Condition:
For \( A_{m \times n} \cdot B_{p \times q} \):
• Must have: \( n = p \) (columns of A = rows of B)
• Result will be: \( (AB)_{m \times q} \)
Formula:
Element \( c_{ij} \) in result = (row i of A) · (column j of B)
\[ c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj} \]
Example:
Calculate: \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \)
\( c_{11} = 1(5) + 2(7) = 19 \)
\( c_{12} = 1(6) + 2(8) = 22 \)
\( c_{21} = 3(5) + 4(7) = 43 \)
\( c_{22} = 3(6) + 4(8) = 50 \)
\[ = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \]
6. Determinant of a Matrix
Definition:
A scalar value calculated from a square matrix. Notation: det(A) or |A|
Formulas:
For 2×2 Matrix:
\[ \det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc \]
For 3×3 Matrix:
\[ \det\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \]
Or: \( aei + bfg + cdh - ceg - bdi - afh \)
Example:
Find: \( \det\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} \)
\( \det(A) = (3)(4) - (5)(2) = 12 - 10 = 2 \)
7. Inverse of a Matrix
Definition:
For square matrix A, the inverse \( A^{-1} \) satisfies:
\[ AA^{-1} = A^{-1}A = I \]
⚠️ Matrix must be square and det(A) ≠ 0
Is a Matrix Invertible?
A matrix is invertible if and only if:
✓ It is a square matrix
✓ Its determinant ≠ 0
Inverse of 2×2 Matrix:
\[ A^{-1} = \frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]
where \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and \( ad - bc \neq 0 \)
Example:
Find inverse: \( A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \)
det(A) = 3(2) - 1(5) = 1
\[ A^{-1} = \frac{1}{1}\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} \]
Inverse of 3×3 Matrix:
\[ A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A) \]
where adj(A) is the adjugate (transpose of cofactor matrix)
This method involves finding minors and cofactors
8. Solve Matrix Equations
Method 1: Using Inverses
For equation \( AX = B \):
\[ X = A^{-1}B \]
Steps:
1. Find \( A^{-1} \)
2. Multiply: \( X = A^{-1}B \)
Method 2: Basic Operations
For \( X + A = B \): Subtract A from both sides
\[ X = B - A \]
Example:
Solve: \( 2X + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \)
Subtract matrix from both sides:
\( 2X = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \)
Divide by 2:
\[ X = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \]
9. Transformation Matrices
Common 2D Transformations:
| Transformation | Matrix |
|---|---|
| Reflection over x-axis | \( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \) |
| Reflection over y-axis | \( \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \) |
| Reflection over y = x | \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) |
| Rotation 90° counterclockwise | \( \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \) |
| Rotation 180° | \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \) |
| Dilation by factor k | \( \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \) |
Vertex Matrix:
To transform a figure, organize vertices as columns:
\[ V = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots \\ y_1 & y_2 & y_3 & \cdots \end{bmatrix} \]
Transformed vertices: \( V' = T \cdot V \) (where T is transformation matrix)
Example:
Reflect triangle with vertices A(1,2), B(3,4), C(5,1) over x-axis
Vertex matrix: \( V = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 1 \end{bmatrix} \)
Transformation: \( T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)
\[ V' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \\ -2 & -4 & -1 \end{bmatrix} \]
New vertices: A'(1,-2), B'(3,-4), C'(5,-1)
10. Important Properties
Key Properties:
1. \( (AB)^T = B^T A^T \) (Transpose of product)
2. \( (AB)^{-1} = B^{-1}A^{-1} \) (Inverse of product)
3. \( \det(AB) = \det(A) \cdot \det(B) \)
4. \( \det(A^{-1}) = \frac{1}{\det(A)} \)
5. \( \det(kA) = k^n\det(A) \) for n×n matrix
6. \( AI = IA = A \) (Identity property)
7. \( AB \neq BA \) (NOT commutative)
📚 Study Tips
✓ For addition/subtraction: matrices must have same dimensions
✓ For multiplication: columns of first = rows of second
✓ Matrix multiplication is NOT commutative: AB ≠ BA
✓ Inverse exists only if determinant ≠ 0
✓ For 2×2 inverse: swap diagonals, negate off-diagonals, divide by det
