Basic Math

Matrices | Twelfth Grade

Matrices

Complete Notes & Formulae for Twelfth Grade (Precalculus)

1. Matrix Vocabulary

Definition:

A matrix is a rectangular array of numbers arranged in rows and columns

\[ A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \]

Key Terms:

Order/Dimension: \( m \times n \) (m rows by n columns)

Element: \( a_{ij} \) is the element in row i, column j

Square Matrix: Same number of rows and columns (n × n)

Row Matrix: Matrix with only one row (1 × n)

Column Matrix: Matrix with only one column (m × 1)

Zero Matrix: All elements are zero

Identity Matrix (I): Square matrix with 1's on diagonal, 0's elsewhere

2. Matrix Operation Rules

Compatibility for Operations:

Addition/Subtraction: Matrices must have the SAME dimensions

Scalar Multiplication: Can multiply any matrix by a scalar

Matrix Multiplication: Number of columns in first = number of rows in second

Properties Summary:

PropertyFormula
Commutative (Addition)\( A + B = B + A \)
Associative (Addition)\( (A + B) + C = A + (B + C) \)
Associative (Multiplication)\( (AB)C = A(BC) \)
Distributive\( A(B + C) = AB + AC \)
NOT Commutative (Mult)\( AB \neq BA \) (in general)

3. Add and Subtract Matrices

Rule:

Add or subtract corresponding elements (element-by-element)

\[ A \pm B = \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} \end{bmatrix} \]

⚠️ Both matrices MUST have the same dimensions

Example:

Calculate: \( \begin{bmatrix} 3 & 5 \\ 1 & -2 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 4 & 6 \end{bmatrix} \)

Add corresponding elements:

\[ = \begin{bmatrix} 3+2 & 5+(-1) \\ 1+4 & -2+6 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 5 & 4 \end{bmatrix} \]

4. Multiply a Matrix by a Scalar

Rule:

Multiply every element by the scalar

\[ kA = k\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} ka_{11} & ka_{12} \\ ka_{21} & ka_{22} \end{bmatrix} \]

Example:

Calculate: \( 3\begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix} \)

\[ = \begin{bmatrix} 3(2) & 3(-1) \\ 3(0) & 3(4) \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 0 & 12 \end{bmatrix} \]

5. Multiply Two Matrices

Condition:

For \( A_{m \times n} \cdot B_{p \times q} \):

• Must have: \( n = p \) (columns of A = rows of B)

• Result will be: \( (AB)_{m \times q} \)

Formula:

Element \( c_{ij} \) in result = (row i of A) · (column j of B)

\[ c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj} \]

Example:

Calculate: \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \)

\( c_{11} = 1(5) + 2(7) = 19 \)

\( c_{12} = 1(6) + 2(8) = 22 \)

\( c_{21} = 3(5) + 4(7) = 43 \)

\( c_{22} = 3(6) + 4(8) = 50 \)

\[ = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \]

6. Determinant of a Matrix

Definition:

A scalar value calculated from a square matrix. Notation: det(A) or |A|

Formulas:

For 2×2 Matrix:

\[ \det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc \]

For 3×3 Matrix:

\[ \det\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \]

Or: \( aei + bfg + cdh - ceg - bdi - afh \)

Example:

Find: \( \det\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} \)

\( \det(A) = (3)(4) - (5)(2) = 12 - 10 = 2 \)

7. Inverse of a Matrix

Definition:

For square matrix A, the inverse \( A^{-1} \) satisfies:

\[ AA^{-1} = A^{-1}A = I \]

⚠️ Matrix must be square and det(A) ≠ 0

Is a Matrix Invertible?

A matrix is invertible if and only if:

✓ It is a square matrix

✓ Its determinant ≠ 0

Inverse of 2×2 Matrix:

\[ A^{-1} = \frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]

where \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and \( ad - bc \neq 0 \)

Example:

Find inverse: \( A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \)

det(A) = 3(2) - 1(5) = 1

\[ A^{-1} = \frac{1}{1}\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} \]

Inverse of 3×3 Matrix:

\[ A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A) \]

where adj(A) is the adjugate (transpose of cofactor matrix)

This method involves finding minors and cofactors

8. Solve Matrix Equations

Method 1: Using Inverses

For equation \( AX = B \):

\[ X = A^{-1}B \]

Steps:

1. Find \( A^{-1} \)

2. Multiply: \( X = A^{-1}B \)

Method 2: Basic Operations

For \( X + A = B \): Subtract A from both sides

\[ X = B - A \]

Example:

Solve: \( 2X + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \)

Subtract matrix from both sides:

\( 2X = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \)

Divide by 2:

\[ X = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \]

9. Transformation Matrices

Common 2D Transformations:

TransformationMatrix
Reflection over x-axis\( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)
Reflection over y-axis\( \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \)
Reflection over y = x\( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)
Rotation 90° counterclockwise\( \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \)
Rotation 180°\( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)
Dilation by factor k\( \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \)

Vertex Matrix:

To transform a figure, organize vertices as columns:

\[ V = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots \\ y_1 & y_2 & y_3 & \cdots \end{bmatrix} \]

Transformed vertices: \( V' = T \cdot V \) (where T is transformation matrix)

Example:

Reflect triangle with vertices A(1,2), B(3,4), C(5,1) over x-axis

Vertex matrix: \( V = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 1 \end{bmatrix} \)

Transformation: \( T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)

\[ V' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \\ -2 & -4 & -1 \end{bmatrix} \]

New vertices: A'(1,-2), B'(3,-4), C'(5,-1)

10. Important Properties

Key Properties:

1. \( (AB)^T = B^T A^T \) (Transpose of product)

2. \( (AB)^{-1} = B^{-1}A^{-1} \) (Inverse of product)

3. \( \det(AB) = \det(A) \cdot \det(B) \)

4. \( \det(A^{-1}) = \frac{1}{\det(A)} \)

5. \( \det(kA) = k^n\det(A) \) for n×n matrix

6. \( AI = IA = A \) (Identity property)

7. \( AB \neq BA \) (NOT commutative)

📚 Study Tips

✓ For addition/subtraction: matrices must have same dimensions

✓ For multiplication: columns of first = rows of second

✓ Matrix multiplication is NOT commutative: AB ≠ BA

✓ Inverse exists only if determinant ≠ 0

✓ For 2×2 inverse: swap diagonals, negate off-diagonals, divide by det

Shares: