Logarithmic Functions
📌 What is a Logarithmic Function?
A logarithmic function is the inverse of an exponential function. The parent logarithmic function is:
\( f(x) = \log_b x \)
Where \( b \) is the base (\( b > 0, b \neq 1 \)) and \( x \) is the argument (must be positive)
Domain and Range of Logarithmic Functions
Parent Function: \( f(x) = \log_b x \)
Domain:
\( x > 0 \) or \( (0, \infty) \)
The argument must be positive (you cannot take the log of zero or negative numbers)
Range:
All real numbers or \( (-\infty, \infty) \)
The output can be any real number (positive, negative, or zero)
Transformed Function: \( f(x) = a\log_b(x - h) + k \)
Domain:
Set the argument greater than zero and solve:
\( x - h > 0 \) → \( x > h \) or \( (h, \infty) \)
Range:
All real numbers: \( (-\infty, \infty) \)
Vertical shifts and stretches don't change the range
📝 Examples - Finding Domain:
Example 1: Find domain of \( f(x) = \log_2(x + 3) \)
Set argument > 0: \( x + 3 > 0 \)
Solve: \( x > -3 \)
Domain: \( (-3, \infty) \)
Example 2: Find domain of \( f(x) = \log_5(2x - 4) + 1 \)
Set argument > 0: \( 2x - 4 > 0 \)
Solve: \( 2x > 4 \) → \( x > 2 \)
Domain: \( (2, \infty) \)
Range: All real numbers
Example 3: Find domain of \( f(x) = \ln(5 - x) \)
Set argument > 0: \( 5 - x > 0 \)
Solve: \( -x > -5 \) → \( x < 5 \)
Domain: \( (-\infty, 5) \)
Key Features of Logarithmic Graphs
Characteristics of \( f(x) = \log_b x \) (where \( b > 1 \)):
- Vertical Asymptote: \( x = 0 \) (y-axis)
- No Horizontal Asymptote
- X-intercept: \( (1, 0) \) — because \( \log_b 1 = 0 \)
- No Y-intercept — cannot evaluate at \( x = 0 \)
- Passes through: \( (b, 1) \) — because \( \log_b b = 1 \)
- Passes through: \( \left(\frac{1}{b}, -1\right) \) — because \( \log_b \frac{1}{b} = -1 \)
- Always increasing (rises from left to right)
- Concave down (growth rate decreases)
- Continuous for all \( x > 0 \)
End Behavior:
As \( x \to 0^+ \) (approaches 0 from the right):
\( f(x) \to -\infty \)
The graph goes down toward negative infinity near the asymptote
As \( x \to \infty \):
\( f(x) \to \infty \)
The graph increases slowly but continues to rise
Transformations of Logarithmic Functions
General Form:
\( f(x) = a\log_b(x - h) + k \)
Transformation Effects:
- \( a \): Vertical stretch/compression and reflection
- If \( |a| > 1 \): vertical stretch
- If \( 0 < |a| < 1 \): vertical compression
- If \( a < 0 \): reflection over x-axis
- \( h \): Horizontal shift
- If \( h > 0 \): shift RIGHT \( h \) units
- If \( h < 0 \): shift LEFT \( |h| \) units
- Asymptote moves to \( x = h \)
- \( k \): Vertical shift
- If \( k > 0 \): shift UP \( k \) units
- If \( k < 0 \): shift DOWN \( |k| \) units
Special Transformations:
Reflection over x-axis:
\( f(x) = -\log_b x \)
Reflection over y-axis:
\( f(x) = \log_b(-x) \)
Domain becomes \( (-\infty, 0) \) (negative values only)
Graphing Logarithmic Functions
Step-by-Step Graphing Process:
- Identify the parent function \( \log_b x \)
- Find the vertical asymptote
- Set argument = 0: for \( \log_b(x-h) \), asymptote is \( x = h \)
- Find the x-intercept
- Set \( f(x) = 0 \) and solve
- For parent function: x-intercept is (1, 0)
- Plot key points
- Use points like \( (b, 1) \), \( (1, 0) \), \( (\frac{1}{b}, -1) \) for parent
- Apply transformations to these points
- Sketch the curve
- Graph approaches asymptote on left
- Graph increases slowly to the right
- State domain and range
📝 Example 1 - Parent Function:
Graph \( f(x) = \log_2 x \)
Step 1: Vertical asymptote at \( x = 0 \)
Step 2: X-intercept at \( (1, 0) \)
Step 3: Key points:
\( x = \frac{1}{2} \): \( f(\frac{1}{2}) = \log_2 \frac{1}{2} = -1 \) → \( (\frac{1}{2}, -1) \)
\( x = 1 \): \( f(1) = \log_2 1 = 0 \) → \( (1, 0) \)
\( x = 2 \): \( f(2) = \log_2 2 = 1 \) → \( (2, 1) \)
\( x = 4 \): \( f(4) = \log_2 4 = 2 \) → \( (4, 2) \)
\( x = 8 \): \( f(8) = \log_2 8 = 3 \) → \( (8, 3) \)
Step 4: Domain: \( (0, \infty) \), Range: \( (-\infty, \infty) \)
📝 Example 2 - Horizontal Shift:
Graph \( f(x) = \log_3(x - 2) \)
Step 1: Identify transformation
Shift right 2 units
Step 2: Vertical asymptote
\( x - 2 = 0 \) → \( x = 2 \)
Step 3: X-intercept
Set \( f(x) = 0 \): \( \log_3(x-2) = 0 \)
\( x - 2 = 1 \) → \( x = 3 \)
X-intercept: \( (3, 0) \)
Step 4: Key points (shift parent points right 2)
\( (3, 0) \), \( (5, 1) \), \( (11, 2) \)
Domain: \( (2, \infty) \), Range: \( (-\infty, \infty) \)
📝 Example 3 - Multiple Transformations:
Graph \( f(x) = -2\log_2(x + 1) + 3 \)
Transformations:
- Shift LEFT 1 unit: \( (x + 1) \)
- Vertical stretch by 2: coefficient 2
- Reflection over x-axis: negative sign
- Shift UP 3 units: \( +3 \)
Vertical asymptote:
\( x + 1 = 0 \) → \( x = -1 \)
X-intercept:
Set \( f(x) = 0 \): \( -2\log_2(x+1) + 3 = 0 \)
\( -2\log_2(x+1) = -3 \)
\( \log_2(x+1) = \frac{3}{2} \)
\( x + 1 = 2^{3/2} = 2\sqrt{2} \approx 2.83 \)
\( x \approx 1.83 \)
Domain: \( (-1, \infty) \), Range: \( (-\infty, \infty) \)
📝 Example 4 - Natural Logarithm:
Graph \( f(x) = \ln(x - 3) + 2 \)
Vertical asymptote: \( x = 3 \)
X-intercept:
\( \ln(x-3) + 2 = 0 \)
\( \ln(x-3) = -2 \)
\( x - 3 = e^{-2} \)
\( x = 3 + e^{-2} \approx 3.135 \)
Key points:
\( x = 4 \): \( f(4) = \ln(1) + 2 = 0 + 2 = 2 \) → \( (4, 2) \)
\( x = 3 + e \approx 5.72 \): \( f \approx \ln(e) + 2 = 3 \) → \( (5.72, 3) \)
Domain: \( (3, \infty) \), Range: \( (-\infty, \infty) \)
Comparing Logarithmic and Exponential Functions
Inverse Relationship:
Logarithmic functions are inverses of exponential functions, so their graphs are reflections across the line \( y = x \).
| Property | Exponential \( b^x \) | Logarithmic \( \log_b x \) |
|---|---|---|
| Domain | All real numbers | \( x > 0 \) |
| Range | \( y > 0 \) | All real numbers |
| Asymptote | Horizontal: \( y = 0 \) | Vertical: \( x = 0 \) |
| Intercept | Y-intercept: \( (0, 1) \) | X-intercept: \( (1, 0) \) |
| Behavior | Rapid growth | Slow growth |
⚡ Quick Summary
- Domain: Set argument > 0 and solve for \( x \)
- Range: Always all real numbers (no restriction)
- Vertical asymptote: Where argument = 0
- X-intercept: Set function = 0 and solve
- No y-intercept (cannot evaluate at \( x = 0 \))
- Parent function passes through \( (1, 0) \), \( (b, 1) \), \( (\frac{1}{b}, -1) \)
- Always increasing (for \( b > 1 \))
- Horizontal shift \( h \) moves asymptote to \( x = h \)
- Vertical shifts do not affect domain
- Graph is the reflection of exponential across \( y = x \)
📚 Common Mistakes to Avoid
- ❌ Don't include zero or negative numbers in the domain
- ❌ Don't forget that \( \log_b(x-h) \) shifts RIGHT, not left
- ❌ Don't confuse vertical asymptote location after transformations
- âś“ Do always find domain by setting argument > 0
- âś“ Do remember the asymptote moves with horizontal shifts
- âś“ Do check that x-intercept satisfies the original equation
