Logarithms
📌 What is a Logarithm?
A logarithm is the inverse operation of exponentiation. It answers the question: "To what power must the base be raised to get a certain number?"
If \( b^y = x \), then \( \log_b x = y \)
Read as: "log base b of x equals y"
Converting Between Exponential and Logarithmic Form
Conversion Rules:
Exponential Form → Logarithmic Form:
\( b^y = x \) becomes \( \log_b x = y \)
Logarithmic Form → Exponential Form:
\( \log_b x = y \) becomes \( b^y = x \)
Where: \( b \) = base (must be positive, ≠ 1), \( x \) = argument (must be positive), \( y \) = exponent/answer
📝 Examples - Exponential to Logarithmic:
Example 1: \( 2^3 = 8 \)
Base = 2, Exponent = 3, Result = 8
Logarithmic form: \( \log_2 8 = 3 \)
Example 2: \( 5^2 = 25 \)
Logarithmic form: \( \log_5 25 = 2 \)
Example 3: \( 10^{-2} = 0.01 \)
Logarithmic form: \( \log_{10} 0.01 = -2 \)
Example 4 (Rational Base): \( \left(\frac{1}{2}\right)^3 = \frac{1}{8} \)
Logarithmic form: \( \log_{1/2} \frac{1}{8} = 3 \)
📝 Examples - Logarithmic to Exponential:
Example 1: \( \log_3 9 = 2 \)
Exponential form: \( 3^2 = 9 \)
Example 2: \( \log_4 64 = 3 \)
Exponential form: \( 4^3 = 64 \)
Example 3: \( \log_{10} 1000 = 3 \)
Exponential form: \( 10^3 = 1000 \)
Natural Logarithms
Definition:
A natural logarithm is a logarithm with base \( e \) (Euler's number ≈ 2.71828).
\( \ln x = \log_e x \)
Conversion:
Exponential: \( e^y = x \)
Natural Log: \( \ln x = y \)
📝 Examples - Natural Logarithms:
Example 1: \( e^3 = x \) → \( \ln x = 3 \)
Example 2: \( \ln 20 = y \) → \( e^y = 20 \)
Example 3: \( e^{-2} = 0.135 \) → \( \ln 0.135 = -2 \)
Evaluating Logarithms
How to Evaluate:
To evaluate \( \log_b x = ? \), ask: "What power do I raise \( b \) to get \( x \)?"
Special Values:
- \( \log_b 1 = 0 \) (any base to power 0 equals 1)
- \( \log_b b = 1 \) (base to power 1 equals itself)
- \( \log_b b^n = n \) (base to power n equals \( b^n \))
- \( b^{\log_b x} = x \) (inverse property)
📝 Examples - Evaluating:
Example 1: Evaluate \( \log_2 32 \)
Ask: "2 to what power = 32?"
\( 2^5 = 32 \)
Answer: \( \log_2 32 = 5 \)
Example 2: Evaluate \( \log_5 125 \)
\( 5^3 = 125 \)
Answer: \( \log_5 125 = 3 \)
Example 3: Evaluate \( \log_{10} 0.001 \)
\( 0.001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3} \)
Answer: \( \log_{10} 0.001 = -3 \)
Example 4: Evaluate \( \log_3 \frac{1}{9} \)
\( \frac{1}{9} = \frac{1}{3^2} = 3^{-2} \)
Answer: \( \log_3 \frac{1}{9} = -2 \)
Example 5: Evaluate \( \ln e^4 \)
Using property \( \log_b b^n = n \)
Answer: \( \ln e^4 = 4 \)
Change of Base Formula
Formula:
The change of base formula allows you to convert a logarithm from one base to another:
\( \log_b x = \frac{\log_c x}{\log_c b} \)
Where \( c \) is any positive base (commonly 10 or \( e \))
Common Forms:
Using base 10: \( \log_b x = \frac{\log x}{\log b} \)
Using base e: \( \log_b x = \frac{\ln x}{\ln b} \)
📝 Examples - Change of Base:
Example 1: Evaluate \( \log_2 10 \) using base 10
\( \log_2 10 = \frac{\log 10}{\log 2} = \frac{1}{0.301} \approx 3.322 \)
Example 2: Evaluate \( \log_5 20 \) using natural log
\( \log_5 20 = \frac{\ln 20}{\ln 5} = \frac{2.996}{1.609} \approx 1.861 \)
Example 3: Simplify \( \log_7 49 \)
Can solve directly: \( 7^2 = 49 \), so \( \log_7 49 = 2 \)
Or use change of base: \( \frac{\log 49}{\log 7} = \frac{1.690}{0.845} = 2 \)
Properties of Logarithms
Three Main Properties:
1. Product Property:
\( \log_b (MN) = \log_b M + \log_b N \)
The log of a product equals the sum of the logs
2. Quotient Property:
\( \log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N \)
The log of a quotient equals the difference of the logs
3. Power Property:
\( \log_b (M^p) = p \log_b M \)
The log of a power equals the exponent times the log
Additional Properties:
- \( \log_b 1 = 0 \)
- \( \log_b b = 1 \)
- \( \log_b b^x = x \)
- \( b^{\log_b x} = x \)
- \( \log_b \frac{1}{N} = -\log_b N \)
Using the Product Property
📝 Examples - Product Property:
Example 1: Expand \( \log_3 (5 \cdot 7) \)
\( \log_3 (5 \cdot 7) = \log_3 5 + \log_3 7 \)
Example 2: Condense \( \log_2 x + \log_2 y \)
\( \log_2 x + \log_2 y = \log_2 (xy) \)
Example 3: Simplify \( \log_5 10 + \log_5 25 \)
\( \log_5 10 + \log_5 25 = \log_5 (10 \cdot 25) = \log_5 250 \)
Using the Quotient Property
📝 Examples - Quotient Property:
Example 1: Expand \( \log_4 \frac{8}{3} \)
\( \log_4 \frac{8}{3} = \log_4 8 - \log_4 3 \)
Example 2: Condense \( \log_7 12 - \log_7 4 \)
\( \log_7 12 - \log_7 4 = \log_7 \frac{12}{4} = \log_7 3 \)
Example 3: Simplify \( \ln 100 - \ln 20 \)
\( \ln 100 - \ln 20 = \ln \frac{100}{20} = \ln 5 \)
Using the Power Property
📝 Examples - Power Property:
Example 1: Expand \( \log_2 x^5 \)
\( \log_2 x^5 = 5 \log_2 x \)
Example 2: Condense \( 3 \log_5 y \)
\( 3 \log_5 y = \log_5 y^3 \)
Example 3: Simplify \( \log_3 \sqrt{27} \)
\( \log_3 \sqrt{27} = \log_3 27^{1/2} = \frac{1}{2} \log_3 27 = \frac{1}{2} \cdot 3 = \frac{3}{2} \)
Example 4: Expand \( \ln x^{-2} \)
\( \ln x^{-2} = -2 \ln x \)
Combining Properties
📝 Example 1 - Expand Completely:
Expand \( \log_2 \frac{x^3y}{z^2} \)
Step 1: Use quotient property
\( = \log_2 (x^3y) - \log_2 z^2 \)
Step 2: Use product property on first term
\( = \log_2 x^3 + \log_2 y - \log_2 z^2 \)
Step 3: Use power property
\( = 3\log_2 x + \log_2 y - 2\log_2 z \)
📝 Example 2 - Condense to Single Log:
Condense \( 2\log_5 x + 3\log_5 y - \log_5 z \)
Step 1: Use power property
\( = \log_5 x^2 + \log_5 y^3 - \log_5 z \)
Step 2: Use product property on first two terms
\( = \log_5 (x^2y^3) - \log_5 z \)
Step 3: Use quotient property
\( = \log_5 \frac{x^2y^3}{z} \)
📝 Example 3 - Evaluate Using Properties:
Evaluate \( \log_2 40 - \log_2 5 \)
Use quotient property:
\( = \log_2 \frac{40}{5} = \log_2 8 \)
Since \( 2^3 = 8 \):
\( = 3 \)
📝 Example 4 - Complex Evaluation:
If \( \log_3 2 = 0.631 \) and \( \log_3 5 = 1.465 \), find \( \log_3 10 \)
Note: \( 10 = 2 \times 5 \)
Use product property:
\( \log_3 10 = \log_3 (2 \times 5) = \log_3 2 + \log_3 5 \)
\( = 0.631 + 1.465 \)
\( = 2.096 \)
⚡ Quick Summary
| Property/Rule | Formula |
|---|---|
| Definition | \( b^y = x \) ↔ \( \log_b x = y \) |
| Product Property | \( \log_b(MN) = \log_b M + \log_b N \) |
| Quotient Property | \( \log_b\frac{M}{N} = \log_b M - \log_b N \) |
| Power Property | \( \log_b(M^p) = p\log_b M \) |
| Change of Base | \( \log_b x = \frac{\log_c x}{\log_c b} \) |
| Natural Log | \( \ln x = \log_e x \) |
- Logarithm is the inverse of exponentiation
- \( \log_b 1 = 0 \) and \( \log_b b = 1 \) always
- Use change of base for calculator evaluation
- Product → add logs; Quotient → subtract logs; Power → multiply coefficient
- To expand: break apart; To condense: combine into single log
📚 Common Logarithms Reference
Special Logarithms:
- Common logarithm: \( \log x = \log_{10} x \) (base 10)
- Natural logarithm: \( \ln x = \log_e x \) (base \( e \approx 2.718 \))
- Binary logarithm: \( \log_2 x \) (base 2, used in computer science)
Important Values:
- \( \log_{10} 10 = 1 \)
- \( \log_{10} 100 = 2 \)
- \( \log_{10} 1000 = 3 \)
- \( \ln e = 1 \)
- \( \ln 1 = 0 \)
