Exponential Functions
📌 What is an Exponential Function?
An exponential function is a function where the variable appears in the exponent:
\( f(x) = ab^x \)
Where:
- \( a \) = initial value (y-intercept when \( x = 0 \))
- \( b \) = base (growth/decay factor), \( b > 0, b \neq 1 \)
- \( x \) = exponent (independent variable)
Domain and Range of Exponential Functions
General Form: \( f(x) = ab^x + k \)
Domain:
All real numbers: \( (-\infty, \infty) \)
Exponential functions are defined for all values of \( x \)
Range:
If \( a > 0 \): \( y > k \) or \( (k, \infty) \)
If \( a < 0 \): \( y < k \) or \( (-\infty, k) \)
The range depends on the horizontal asymptote \( y = k \)
📝 Examples - Domain and Range:
Example 1: \( f(x) = 2^x \)
Domain: \( (-\infty, \infty) \)
Range: \( (0, \infty) \) or \( y > 0 \)
Asymptote: \( y = 0 \)
Example 2: \( f(x) = 3 \cdot 2^x - 5 \)
Domain: \( (-\infty, \infty) \)
Range: \( (-5, \infty) \) or \( y > -5 \)
Asymptote: \( y = -5 \)
Evaluating Exponential Functions
How to Evaluate:
- Substitute the given value for \( x \)
- Calculate the power (base raised to the exponent)
- Multiply by the coefficient if present
- Add/subtract any constant term
📝 Examples - Evaluating:
Example 1: Evaluate \( f(x) = 2^x \) when \( x = 3 \)
\( f(3) = 2^3 = 8 \)
Example 2: Evaluate \( f(x) = 5 \cdot 3^x \) when \( x = 2 \)
\( f(2) = 5 \cdot 3^2 = 5 \cdot 9 = 45 \)
Example 3: Evaluate \( f(x) = 100 \cdot (0.5)^x \) when \( x = 4 \)
\( f(4) = 100 \cdot (0.5)^4 = 100 \cdot 0.0625 = 6.25 \)
Example 4: Evaluate \( f(x) = 2 \cdot 3^x + 1 \) when \( x = 0 \)
\( f(0) = 2 \cdot 3^0 + 1 = 2 \cdot 1 + 1 = 3 \)
Exponential Growth and Decay
Exponential Growth: \( b > 1 \)
\( f(x) = a(1 + r)^x \) or \( f(x) = ab^x \) where \( b > 1 \)
- \( a \) = initial amount
- \( r \) = growth rate (as a decimal)
- \( x \) or \( t \) = time
- Growth factor: \( b = 1 + r \)
- Function increases as \( x \) increases
Exponential Decay: \( 0 < b < 1 \)
\( f(x) = a(1 - r)^x \) or \( f(x) = ab^x \) where \( 0 < b < 1 \)
- \( a \) = initial amount
- \( r \) = decay rate (as a decimal)
- \( x \) or \( t \) = time
- Decay factor: \( b = 1 - r \)
- Function decreases as \( x \) increases
📝 Example - Growth:
A population of 500 bacteria doubles every hour. Write the exponential function and find the population after 3 hours.
Step 1: Identify values
Initial amount: \( a = 500 \)
Doubles means: \( b = 2 \) (growth factor)
Step 2: Write function
\( P(t) = 500 \cdot 2^t \)
Step 3: Find population after 3 hours
\( P(3) = 500 \cdot 2^3 = 500 \cdot 8 = 4000 \) bacteria
📝 Example - Decay:
A car worth $30,000 depreciates at 15% per year. Write the function and find its value after 5 years.
Step 1: Identify values
Initial value: \( a = 30000 \)
Decay rate: \( r = 0.15 \)
Decay factor: \( b = 1 - 0.15 = 0.85 \)
Step 2: Write function
\( V(t) = 30000(0.85)^t \)
Step 3: Find value after 5 years
\( V(5) = 30000(0.85)^5 \approx 30000(0.4437) \approx $13,311 \)
Graphing Exponential Functions
Key Features of Exponential Graphs:
For \( f(x) = ab^x + k \):
- Y-intercept: \( (0, a + k) \) — substitute \( x = 0 \)
- Horizontal asymptote: \( y = k \)
- Domain: All real numbers
- If \( b > 1 \): Growth (increases left to right)
- If \( 0 < b < 1 \): Decay (decreases left to right)
- Graph never touches the asymptote
- Always positive if \( a > 0 \) and above asymptote
Steps to Graph:
- Identify the horizontal asymptote \( y = k \)
- Find the y-intercept by substituting \( x = 0 \)
- Calculate 2-3 more points by choosing convenient \( x \) values
- Determine if it's growth (\( b > 1 \)) or decay (\( 0 < b < 1 \))
- Draw the asymptote, plot points, and sketch the curve
📝 Example - Graphing:
Graph \( f(x) = 2 \cdot 3^x - 1 \)
Step 1: Horizontal asymptote
\( y = -1 \)
Step 2: Y-intercept
\( f(0) = 2 \cdot 3^0 - 1 = 2 \cdot 1 - 1 = 1 \) → Point: \( (0, 1) \)
Step 3: Additional points
\( f(1) = 2 \cdot 3^1 - 1 = 6 - 1 = 5 \) → \( (1, 5) \)
\( f(-1) = 2 \cdot 3^{-1} - 1 = \frac{2}{3} - 1 = -\frac{1}{3} \) → \( (-1, -\frac{1}{3}) \)
Step 4: Type
Since \( b = 3 > 1 \), this is exponential growth
Step 5: Draw asymptote at \( y = -1 \), plot points, and sketch increasing curve
Transformations of Exponential Functions
Standard Form:
\( f(x) = a \cdot b^{x-h} + k \)
- \( a \): Vertical stretch/compression and reflection
- \( h \): Horizontal shift (right if \( h > 0 \), left if \( h < 0 \))
- \( k \): Vertical shift (up if \( k > 0 \), down if \( k < 0 \))
- Horizontal asymptote moves to \( y = k \)
Identifying Linear vs. Exponential Functions
From a Table of Values:
Linear Function:
- Constant difference in \( y \)-values for equal \( x \) intervals
- Form: \( y = mx + b \)
Exponential Function:
- Constant ratio in \( y \)-values for equal \( x \) intervals
- Form: \( y = ab^x \)
📝 Example - Identify from Table:
| \( x \) | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| \( y \) | 3 | 6 | 12 | 24 |
Check differences: \( 6-3=3, 12-6=6, 24-12=12 \) → Not constant (not linear)
Check ratios: \( \frac{6}{3}=2, \frac{12}{6}=2, \frac{24}{12}=2 \) → Constant!
Answer: Exponential with \( a = 3, b = 2 \) → \( y = 3 \cdot 2^x \)
Exponential Functions Over Unit Intervals
Key Concept:
For exponential functions, consecutive integer values of \( x \) (unit intervals) produce \( y \)-values with a constant ratio.
\( \frac{f(x+1)}{f(x)} = b \) (constant for all \( x \))
This ratio equals the base \( b \) of the exponential function.
Word Problems with Exponential Functions
Common Formulas:
1. Compound Interest:
\( A = P(1 + r)^t \)
\( P \) = principal, \( r \) = rate, \( t \) = time, \( A \) = amount
2. Population Growth:
\( P(t) = P_0(1 + r)^t \)
3. Radioactive Decay:
\( N(t) = N_0 \left(\frac{1}{2}\right)^{t/h} \)
\( h \) = half-life
4. General Growth/Decay:
\( y = a(1 \pm r)^t \)
Use + for growth, − for decay
📝 Example - Compound Interest:
You invest $5,000 at 6% annual interest compounded yearly. How much will you have after 10 years?
Given:
\( P = 5000 \)
\( r = 0.06 \)
\( t = 10 \)
Formula:
\( A = 5000(1.06)^{10} \)
Calculate:
\( A = 5000(1.790847) \approx $8,954.24 \)
📝 Example - Population Growth:
A town's population is 20,000 and grows at 3% per year. Write the function and find the population after 15 years.
Write function:
\( P(t) = 20000(1.03)^t \)
After 15 years:
\( P(15) = 20000(1.03)^{15} \approx 20000(1.558) \approx 31,160 \) people
⚡ Quick Summary
| Property | Exponential Function |
|---|---|
| General Form | \( f(x) = ab^x + k \) |
| Domain | All real numbers |
| Range | \( y > k \) (if \( a > 0 \)) |
| Asymptote | \( y = k \) |
| Growth | \( b > 1 \) |
| Decay | \( 0 < b < 1 \) |
- Exponential functions have variable in the exponent
- Growth: \( y = a(1+r)^t \), Decay: \( y = a(1-r)^t \)
- Linear has constant differences; exponential has constant ratios
- Y-intercept at \( (0, a+k) \); horizontal asymptote at \( y = k \)
- Graph increases (growth) or decreases (decay) rapidly
