Class 10 Mathematics Formulas
Chapter 1: Real Numbers
- Euclid's Division Lemma: \(a = bq + r\), where \(0 \leq r < b\)
- HCF × LCM: \(\text{HCF}(a, b) \times \text{LCM}(a, b) = a \times b\)
- Fundamental Theorem of Arithmetic: Every composite number can be expressed as a product of primes
Chapter 2: Polynomials
Quadratic Polynomial
For polynomial \(ax^2 + bx + c\):
- Sum of zeros: \(\alpha + \beta = -\frac{b}{a}\)
- Product of zeros: \(\alpha \beta = \frac{c}{a}\)
- Quadratic polynomial from zeros: \(x^2 - (\alpha + \beta)x + \alpha\beta\)
Cubic Polynomial
For polynomial \(ax^3 + bx^2 + cx + d\):
- \(\alpha + \beta + \gamma = -\frac{b}{a}\)
- \(\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}\)
- \(\alpha\beta\gamma = -\frac{d}{a}\)
Division Algorithm
\[p(x) = g(x) \times q(x) + r(x)\]
where degree of \(r(x) < \) degree of \(g(x)\)
Chapter 3: Pair of Linear Equations in Two Variables
For equations \(a_1x + b_1y + c_1 = 0\) and \(a_2x + b_2y + c_2 = 0\):
- Unique solution (Intersecting lines): \(\frac{a_1}{a_2} \neq \frac{b_1}{b_2}\)
- No solution (Parallel lines): \(\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}\)
- Infinite solutions (Coincident lines): \(\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}\)
Cramer's Rule
\[x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}, \quad y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}\]
Chapter 4: Quadratic Equations
Standard Form
\[ax^2 + bx + c = 0, \quad (a \neq 0)\]
Quadratic Formula
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]
Discriminant (D)
\[D = b^2 - 4ac\]
- If \(D > 0\): Two distinct real roots
- If \(D = 0\): Two equal real roots (\(x = -\frac{b}{2a}\))
- If \(D < 0\): No real roots
Chapter 5: Arithmetic Progressions (AP)
- nth term: \(a_n = a + (n-1)d\)
- Sum of n terms: \(S_n = \frac{n}{2}[2a + (n-1)d]\)
- Alternative sum formula: \(S_n = \frac{n}{2}[a + l]\), where \(l\) is last term
- Common difference: \(d = a_n - a_{n-1}\)
- Middle term (odd n): \(a_{\frac{n+1}{2}}\)
Chapter 6: Triangles
Similar Triangles
- AAA Similarity: If corresponding angles are equal
- SSS Similarity: \(\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}\)
- SAS Similarity: Two sides proportional and included angle equal
Pythagoras Theorem
\[(\text{Hypotenuse})^2 = (\text{Base})^2 + (\text{Perpendicular})^2\]
\[h^2 = b^2 + p^2\]
Area Ratios
For similar triangles:
\[\frac{\text{Area of } \triangle ABC}{\text{Area of } \triangle DEF} = \frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2}\]Chapter 7: Coordinate Geometry
- Distance Formula: \(d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}\)
- Section Formula (Internal): \(\left(\frac{m_1x_2 + m_2x_1}{m_1+m_2}, \frac{m_1y_2 + m_2y_1}{m_1+m_2}\right)\)
- Mid-point Formula: \(\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)\)
- Area of Triangle: \(\frac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)|\)
Chapter 8: Introduction to Trigonometry
Basic Trigonometric Ratios
- \(\sin\theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{P}{H}\)
- \(\cos\theta = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{B}{H}\)
- \(\tan\theta = \frac{\text{Perpendicular}}{\text{Base}} = \frac{P}{B}\)
- \(\csc\theta = \frac{H}{P}\)
- \(\sec\theta = \frac{H}{B}\)
- \(\cot\theta = \frac{B}{P}\)
Reciprocal Identities
- \(\sin\theta \cdot \csc\theta = 1\)
- \(\cos\theta \cdot \sec\theta = 1\)
- \(\tan\theta \cdot \cot\theta = 1\)
- \(\tan\theta = \frac{\sin\theta}{\cos\theta}\)
- \(\cot\theta = \frac{\cos\theta}{\sin\theta}\)
Pythagorean Identities
- \(\sin^2\theta + \cos^2\theta = 1\)
- \(1 + \tan^2\theta = \sec^2\theta\)
- \(1 + \cot^2\theta = \csc^2\theta\)
Complementary Angles
- \(\sin(90° - \theta) = \cos\theta\)
- \(\cos(90° - \theta) = \sin\theta\)
- \(\tan(90° - \theta) = \cot\theta\)
- \(\cot(90° - \theta) = \tan\theta\)
- \(\sec(90° - \theta) = \csc\theta\)
- \(\csc(90° - \theta) = \sec\theta\)
Standard Angle Values
Angle | 0° | 30° | 45° | 60° | 90° |
---|---|---|---|---|---|
sin | 0 | \(\frac{1}{2}\) | \(\frac{1}{\sqrt{2}}\) | \(\frac{\sqrt{3}}{2}\) | 1 |
cos | 1 | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{\sqrt{2}}\) | \(\frac{1}{2}\) | 0 |
tan | 0 | \(\frac{1}{\sqrt{3}}\) | 1 | \(\sqrt{3}\) | ∞ |
Chapter 9: Circles
- Tangent perpendicular to radius: The tangent at any point is perpendicular to the radius through point of contact
- Length of tangent from external point: If two tangents are drawn from an external point, they are equal in length
- Tangent formula: \(PA = \sqrt{OP^2 - r^2}\) where \(PA\) is tangent, \(OP\) is distance from center to external point, \(r\) is radius
Chapter 10: Areas Related to Circles
- Area of circle: \(A = \pi r^2\)
- Circumference: \(C = 2\pi r\)
- Area of sector: \(A = \frac{\theta}{360°} \times \pi r^2\)
- Length of arc: \(l = \frac{\theta}{360°} \times 2\pi r\)
- Area of segment: \(A = \text{Area of sector} - \text{Area of triangle}\)
Chapter 11: Surface Areas and Volumes
Cube
- Volume: \(V = a^3\)
- Total Surface Area: \(TSA = 6a^2\)
- Lateral Surface Area: \(LSA = 4a^2\)
Cuboid
- Volume: \(V = l \times b \times h\)
- Total Surface Area: \(TSA = 2(lb + bh + hl)\)
- Lateral Surface Area: \(LSA = 2h(l + b)\)
Cylinder
- Volume: \(V = \pi r^2 h\)
- Curved Surface Area: \(CSA = 2\pi rh\)
- Total Surface Area: \(TSA = 2\pi r(r + h)\)
Cone
- Volume: \(V = \frac{1}{3}\pi r^2 h\)
- Curved Surface Area: \(CSA = \pi rl\) where \(l = \sqrt{r^2 + h^2}\)
- Total Surface Area: \(TSA = \pi r(r + l)\)
Sphere
- Volume: \(V = \frac{4}{3}\pi r^3\)
- Surface Area: \(SA = 4\pi r^2\)
Hemisphere
- Volume: \(V = \frac{2}{3}\pi r^3\)
- Curved Surface Area: \(CSA = 2\pi r^2\)
- Total Surface Area: \(TSA = 3\pi r^2\)
Frustum of Cone
- Volume: \(V = \frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)\)
- Curved Surface Area: \(CSA = \pi l(r_1 + r_2)\)
- Total Surface Area: \(TSA = \pi[l(r_1 + r_2) + r_1^2 + r_2^2]\)
Chapter 12: Statistics
Mean
- Direct Method: \(\bar{x} = \frac{\sum f_ix_i}{\sum f_i}\)
- Assumed Mean Method: \(\bar{x} = a + \frac{\sum f_id_i}{\sum f_i}\) where \(d_i = x_i - a\)
- Step Deviation Method: \(\bar{x} = a + \frac{\sum f_iu_i}{\sum f_i} \times h\) where \(u_i = \frac{x_i - a}{h}\)
Median
\[\text{Median} = l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h\]
where \(l\) = lower limit of median class, \(n\) = total frequency, \(cf\) = cumulative frequency before median class, \(f\) = frequency of median class, \(h\) = class width
Mode
\[\text{Mode} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h\]
where \(l\) = lower limit of modal class, \(f_1\) = frequency of modal class, \(f_0\) = frequency of class before modal class, \(f_2\) = frequency of class after modal class, \(h\) = class width
Relationship
\[3 \times \text{Median} = \text{Mode} + 2 \times \text{Mean}\]
Chapter 13: Probability
- Probability: \(P(E) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}\)
- \(0 \leq P(E) \leq 1\)
- \(P(\text{not } E) = 1 - P(E)\)
- Sum of all probabilities: \(\sum P(E_i) = 1\)
- Impossible event: \(P(E) = 0\)
- Sure event: \(P(E) = 1\)
Important Algebraic Formulas
- \((a + b)^2 = a^2 + 2ab + b^2\)
- \((a - b)^2 = a^2 - 2ab + b^2\)
- \((a + b)(a - b) = a^2 - b^2\)
- \((a + b)^3 = a^3 + b^3 + 3ab(a + b)\)
- \((a - b)^3 = a^3 - b^3 - 3ab(a - b)\)
- \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)
- \(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\)
- \((x + a)(x + b) = x^2 + (a + b)x + ab\)
- \((x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx\)
- \(x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)\)
Exam Tips
- Practice all formulas daily for better retention
- Understand the derivation, not just memorization
- Create a formula sheet for quick revision
- Solve previous year questions using these formulas
- Focus on trigonometry, coordinate geometry, and mensuration