3×3 Matrix Inverse Formula
1. What is Matrix Inverse?
The inverse of a matrix A, denoted as \(A^{-1}\), is a matrix that when multiplied by the original matrix gives the identity matrix.
\[A \cdot A^{-1} = A^{-1} \cdot A = I\]
where \(I\) is the identity matrix:
\[I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\]2. Main Inverse Formula
The 3×3 Matrix Inverse Formula
\[A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A)\]
OR
\[A^{-1} = \frac{\text{adj}(A)}{\det(A)}\]where:
- \(\det(A)\) = Determinant of matrix A
- \(\text{adj}(A)\) = Adjugate (or Adjoint) of matrix A
Condition for Invertibility
- \(A^{-1}\) exists if and only if \(\det(A) \neq 0\) (Matrix is non-singular)
- \(A^{-1}\) does NOT exist if \(\det(A) = 0\) (Matrix is singular)
3. General 3×3 Matrix
Let A be a 3×3 matrix:
\[A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}\]4. Step 1: Calculate the Determinant
Determinant of 3×3 Matrix
\[\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)\]
Or using the expansion method:
\[\det(A) = a\begin{vmatrix} e & f \\ h & i \end{vmatrix} - b\begin{vmatrix} d & f \\ g & i \end{vmatrix} + c\begin{vmatrix} d & e \\ g & h \end{vmatrix}\]5. Step 2: Find the Matrix of Minors
Minor of Each Element
The minor \(M_{ij}\) of element at position (i,j) is the determinant of the 2×2 matrix that remains after removing row i and column j.
\[M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}\]
where:
- \(M_{11} = ei - fh\)
- \(M_{12} = di - fg\)
- \(M_{13} = dh - eg\)
- \(M_{21} = bi - ch\)
- \(M_{22} = ai - cg\)
- \(M_{23} = ah - bg\)
- \(M_{31} = bf - ce\)
- \(M_{32} = af - cd\)
- \(M_{33} = ae - bd\)
6. Step 3: Apply the Cofactor Signs
Matrix of Cofactors
Apply the checkerboard pattern of signs to the matrix of minors:
Sign pattern:
\[\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}\]Cofactor matrix C:
\[C = \begin{bmatrix} +(ei-fh) & -(di-fg) & +(dh-eg) \\ -(bi-ch) & +(ai-cg) & -(ah-bg) \\ +(bf-ce) & -(af-cd) & +(ae-bd) \end{bmatrix}\]7. Step 4: Find the Adjugate (Adjoint) Matrix
Transpose of Cofactor Matrix
The adjugate matrix is the transpose of the cofactor matrix:
\[\text{adj}(A) = C^T\]
\[\text{adj}(A) = \begin{bmatrix} (ei-fh) & -(bi-ch) & (bf-ce) \\ -(di-fg) & (ai-cg) & -(af-cd) \\ (dh-eg) & -(ah-bg) & (ae-bd) \end{bmatrix}\]
8. Step 5: Calculate the Inverse
Final Inverse Formula
\[A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} (ei-fh) & -(bi-ch) & (bf-ce) \\ -(di-fg) & (ai-cg) & -(af-cd) \\ (dh-eg) & -(ah-bg) & (ae-bd) \end{bmatrix}\]
Or divide each element of adj(A) by det(A)
9. Complete Formula in One Expression
\[A^{-1} = \frac{1}{a(ei-fh) - b(di-fg) + c(dh-eg)} \begin{bmatrix} (ei-fh) & -(bi-ch) & (bf-ce) \\ -(di-fg) & (ai-cg) & -(af-cd) \\ (dh-eg) & -(ah-bg) & (ae-bd) \end{bmatrix}\]
10. Worked Example
Example: Find the inverse of matrix A
Given:
\[A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}\]
Step 1: Calculate the determinant
\[\det(A) = 1(1 \cdot 0 - 4 \cdot 6) - 2(0 \cdot 0 - 4 \cdot 5) + 3(0 \cdot 6 - 1 \cdot 5)\]
\[\det(A) = 1(0 - 24) - 2(0 - 20) + 3(0 - 5)\]
\[\det(A) = -24 + 40 - 15 = 1\]
Step 2: Find matrix of minors
- \(M_{11} = 1(0) - 4(6) = -24\)
- \(M_{12} = 0(0) - 4(5) = -20\)
- \(M_{13} = 0(6) - 1(5) = -5\)
- \(M_{21} = 2(0) - 3(6) = -18\)
- \(M_{22} = 1(0) - 3(5) = -15\)
- \(M_{23} = 1(6) - 2(5) = -4\)